Sexual Differentiation


sexually
      indifferent stage

During embryonic development there is a sexually indifferent stage in which the embryo has the potential to develop either male or female structures. Internally, adjacent to each developing gonad, are two primitive ducts that can give rise to either the male or the female reproductive tracts. The Wolffian (mesonephric) ducts are more medial.  The Müllerian (paramesonephric) ducts are more lateral, but then fuse in the midline more caudally.


Sexual differentiation begins with sexual determination, which depends upon the sex chromosomes, X and Y. Sexual determination involves the specification of the gonads as either testes or ovaries. If the embryo is XY, the presence of the SRY gene (for sex-determining region of the Y chromosome) will direct the gonads to develop as testes. In the absence of a Y chromosome and SRY gene, the gonads develop as ovaries.

male flow chartfemale flow chartOnce the gonad begins to develop as a testis, the two support cells in the testis differentiate and begin to generate important regulatory molecules that direct sexual differentiation. The Leydig cells produce testosterone, which promotes development of the Wolffian ducts. The Wolffian ducts then differentiate to form the epididymis, vas deferens, seminal vesicles, and ejaculatory ducts. The Sertoli cells produce Müllerian inhibiting substance (MIS; also known as Anti-Müllerian hormone, AMH), a peptide hormone that causes the Müllerian ducts to regress.


Female development proceeds when there is an absence of the SRY gene. No testosterone or MIS is made. The Wolffian ducts regress, and the Müllerian ducts persist, developing into the fallopian tubes, the uterus and the upper part of the vagina.


Müllerian inhibiting substance is made in the ovary (after it differentiates) by granulosa cells, and is expressed mainly by small growing follicles. The level of MIS is a good indicator of the size of the ovarian reserve (ability to produce eggs capable of being fertilized).  A test for MIS level may be used in the context of in vitro fertilization treatment, as a means to predict how the woman will respond to controlled ovarian stimulation. 


Disorders of Sexual Differentiation

Our understanding of the important signals required for sexual differentiation derives in part from the study of rare individuals who have disorders of sex development.  Two disorders that affect genetically XY individuals are particularly instructive:  androgen insensitivity syndrome and 5-α-reductase deficiency.

androgen
        insensitivityIn androgen insensitivity syndrome, there is a mutation in the androgen receptor such that the tissues do not respond to testosterone or other androgens. (Note that the following description is that of complete androgen insensitivity, in which the androgen receptor is completely defective such that there is no response to androgens, but that partial androgen insensitivity can also occur.)

The gonads that develop in androgen insensitivity syndrome are testes. An individual with complete androgen insensitivity syndrome will develop externally as a female, because the development of the external genitalia (penis with penile urethra and scrotum with descended testes) depends upon androgen signaling. Furthermore, at puberty, breast development occurs because the testosterone produced is converted to estrogen by other tissues, and this estrogen stimulates breast development. The syndrome may be initially recognized because the individual has amenorrhea (a lack of menstruation). Amenorrhea is due to the fact that a uterus never developed because MIS caused regression of the Müllerian ducts.  Another aspect of the phenotype is little growth or armpit or pubic hair, which also depends upon androgen signaling.

5-alpha reductase
        mutationWe know that the proper development of the penis and the prostate gland depends upon the more potent androgen dihydrotestosterone (DHT). This is illustrated in the disorder of sex development that occurs when there is a mutation in the gene coding for the enzyme 5-α-reductase type 2. Individuals with this mutation are born with female-appearing external genitalia. Because of the lack of DHT, the penis does not enlarge, the testes do not descend, and folds of tissue do not fuse to form a scrotum. The outlet of the urethra is not at the tip of the penis, but posterior to it, a condition known as hypospadias. At puberty, however, large levels of circulating testosterone stimulate development of male structures. The erectile tissue enlarges and there is development of male secondary sexual characteristics. Often these individuals, although initially raised as girls, will decide to adopt a male gender identity after puberty.



Quick Quiz


Fill-in Answer Correct False Correct Answer
1. Name the gene required to direct the gonads to develop as testes.
2. What hormone do the Sertoli cells produce that is necessary for sexual differentiation?
3. What developmental structures become the uterus and fallopian tubes?
4. What type of gonad (testis of ovary) develops in an individual with complete androgen insensitivity?
5. What is the appearance of someone with complete androgen insensitivity, male or female?
6. What hormone prevents uterine development in an individual with androgen insensitivity syndrome?
7. The prostate gland does not develop in 5-α-reductase deficiency due to a lack of this hormone.


(Spelling must be correct)