
Software Engineering Principles - Fundamental principles are useful in building complex computer programs and form the basis for software engineering. Software engineering (larger version of computer science) provides techniques to facilitate the development of computer software. It considers not only the software, but the business and technical environment software is used in. It defines the process by which programs are designed, coded, tested, and maintained (among other steps). Rather than just starting coding at some arbitrary point, a problem solving approach is used for the developing programs to accomplish some goal.
The Life Cycle of Software

While you may have (so far) written only simple programs (for example, school) that were discarded once it demonstrated that you could use certain skills, good software undergoes continuing process that is called its life cycle. This life cycle generally consists of:

1. Specification: You must first understand exactly what the problem is that you are solving. You may get an initial program specification from a customer or non-technical person, may be imprecise. Specification requires that you have a complete understanding of problem: input data , what types of data are valid, what sort of interface the program will have, what input errors need to be detected, what assumptions are made, what special cases need to be handled, what is the output, what will be documented, what changes might be made after completion, etc. Specifications should not include the method of solving the problem.
2. Design: After you know exactly what problem is to be solved, a solution to the problem can be designed. For large programs, this is usually broken down into well-defined smaller problems that can be solved using modules that are reusable and independent. (For example, algorithm and interface.) A module can be a single function or a group of functions. The input, output, purpose, and assumptions of each module should be specified. This step should be independent of the implementation.
3. Risk analysis: All software projects have some risk, at least in terms of cost and schedule. Many have additional risks (e.g., software to control a power plant). This course will not discuss risk analysis in detail.
4. Verification: It is possible, in some cases, to formally prove that an algorithm is correct. We will skip.

5. Coding: In this phase the algorithm and abstract data types are translated into a particular programming language. When software is well designed, this is a fairly small part of the software life cycle.

6. Testing: This phase is used to detect as many errors in the design and coding as possible. While the program should be tested as a whole, each module should also be tested separately. Testing should include as much valid data as is known and as many special cases as possible, including invalid input.
7. Refining: Have a working program. What refinements are necessary? Maybe your initial design accomplished what the customer needed, but not all that customer wanted. Often a good design strategy is to simplify the problem, solve the simple problem, and later add refinements to remove the simplifications.
8. Production: This phase includes distribution, installation, and use of the software. We skip details.

9. Maintenance: Once the software is in use, people will find bugs, suggest changes, ask for new features.

Documentation is a key aspect of all phases of the software life cycle, one of the most important aspects of software. For large programs, different people are often responsible for different parts of the life cycle and documentation is crucial to understanding the phases that other people have worked on. Even if you are the only person who will ever use a program (unlikely, except for trivial programs), when you come back to it a week, a month, or a year later, will you remember the specifications, the design details, or other steps? Document each phase so that you don’t need to!

