University of Washington, Bothell
CSS 342: Data Structures, Algorithms, and Discrete Mathematics
Complexity Problem Examples

Some practice problems to help with learning algorithm complexity and Big-O

1) Using the definition of Big O prove the following functions g(n) are O(f(n)) for the given
g(n) and f(n).
a. g(n)=18*n3+ 13n, f(n)=n®; prove: g(n) is O(n°)
b. g(n) =34 + logzn, f(n)=logzn; prove: g(n) is O(logzn)
c. g(n) =logzn + n, f(n) = n; prove: g(n) is O(n)
d. g(n)=(n?>+1)/(n+1),f(n)=n; prove: g(n)is O(n)

2) Show that 2"is O(3") but 3"is not 2"

3) Give a big-oh upper bound on the running time of the for-loop that includes function
func2(n) whose big-oh upper bound is O(f(n)).

for(inti=1;i<=n-3;i++)

{
¥

4) What is the order of each of the following tasks in the worst case?

Computing the sum of the first n even integers by using a for loop
Displaying all n integers in an array

Computing the sum of the first n even integers by using recursion
Computing the sum of the first n even integers by using a closed formula
Finding an element in an unsorted list

Finding an element in a sorted list

func2(n);

0O 0T

5) The following fragment of code computes the matrix multiplication of a[n][n] and
b[n][n]. Give a big-oh upper bound on the running time.
for (inti=0,i<n,i++)
for (intj=0,j<n,j++)

c[i][j] = 0.0;
for (intk =0, k<n, k++)
c[i](j] += ali][k] * b[K][];

6) Find a big-oh upper bound for the worst-case time required by the following algorithm.
Assume that funcl is big O(f1(n)) and func2 is big O(f2(n)):

bool iskey(int s[], int n, int key)

{
for(inti=0;i<n-1;i++)
{
for(intj=i+1;j<n;j++t)
{
if (s[i] + s[j] ==key)
{
funcl(n);
}
else
{
func2(n);
}
}
}
}

7) Letk be a positive integer. Show that 1%+ 25+ 3K+ ... + nk is O(nk*Y).

Some Answers

1) Using the definition of Big O prove the following functions g(n) are O(f(n)) for the given
g(n) and f(n).
a. g(n)=18*nd+13n, f(n)=n%; prove: g(n) is O(n?

Answer:

As per the definition of BigO:
> An Algorithm Ais order f (n): Denoted O(f(n))
o If constants k and no exist
o Such that A requires no more than k x f (n) time units to solve a problem
of sizen>no

Let’s find a k and no so that
kn® > 18 * n® + 13n forall n>no

First, let’s divide each size by n®
k > 18 + 13/n?

Let’s set k = 18+13 = 31; and substitute in for k.
31> 18 + 13/n?
13 > 13/n?
13n% > 13
n?>1
n>1 soletno=1

1c. g(n) =logzn + n, f(n) =n; prove: g(n) is O(n)
Let’s find constants k and no such that
kn >logzn +n forall n>no

2kn > 2(Iogzn +n)

2kn > 2(logy = on Letk=2
22n > 2(Iogzn) * on

ons 2(Iogzn)

2">n

True forn>1

4) What is the order of each of the following tasks in the worst case?
a. Computing the sum of the first n even integers by using a for loop
Answer: O(n)
b. Displaying all n integers in an array
Answer: O(n)
c. Computing the sum of the first n even integers by using recursion
Answer: O(n)
d. Computing the sum of the first n even integers by using a closed formula
Answer: O(1)
e. Finding an element in an unsorted list
Answer: O(n)
f. Finding an element in a sorted list
Answer: depends on searching algorithm. Let’s say we have a variant of
binary search. Then O(logn).

The following fragment of code computes the matrix multiplication of a[n][n] and b[n][n]. Give
a big-oh upper bound on the running time.
for(inti=0,i<n,i++)
for (intj=0,j<n,j++)

c[i][j] = 0.0;
for (intk =0, k<n, k++)
c[i][i] += a[i][k] * b[K][I;

Answer: O(n3)

7) Let k be a positive integer. Show that 1%+ 2+ 3%+ ... + n* is O(n**1).
Hint: Represent n**as (n“+ nk+ nk+ ...+ n¥)

