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Complexity Problem Examples 
 

Some practice problems to help with learning algorithm complexity and Big-O 

 

1) Using the definition of Big O prove the following functions g(n) are O(f(n)) for the given 

g(n) and f(n). 

a. g(n) = 18 * n3 + 13n,  f(n)=n3 ;  prove: g(n) is O(n3) 

b. g(n) = 34 + log2n, f(n)=log2n;   prove: g(n) is O(log2n) 

c. g(n) = log2n + n, f(n) = n;  prove: g(n) is O(n) 

d. g(n) = (n2 + 1) / (n + 1), f(n) = n;  prove: g(n) is O(n) 

 

2) Show that 2n is O(3n) but 3n is not 2n  

 

3) Give a big-oh upper bound on the running time of the for-loop that includes function 

func2(n) whose big-oh upper bound is O(f(n)). 

 

for ( int i = 1; i <= n - 3; i++ ) 

{ 

func2( n ); 

  } 

 

4) What is the order of each of the following tasks in the worst case? 

a. Computing the sum of the first n even integers by using a for loop 

b. Displaying all n integers in an array 

c. Computing the sum of the first n even integers by using recursion 

d. Computing the sum of the first n even integers by using a closed formula 

e. Finding an element in an unsorted list 

f. Finding an element in a sorted list 

 

5) The following fragment of code computes the matrix multiplication of a[n][n] and 

b[n][n]. Give a big-oh upper bound on the running time. 

for ( int i = 0, i < n, i++ )  

for ( int j = 0, j < n, j++ )  

{ 

c[i][j] = 0.0; 

for ( int k = 0, k < n, k++ ) 

c[i][j] += a[i][k] * b[k][j]; 

   } 

 

 

 



6) Find a big-oh upper bound for the worst-case time required by the following algorithm.  

Assume that func1 is big O(f1(n)) and func2 is big O(f2(n)): 

 

bool iskey(int s[], int n, int key)  

{ 

for ( int i = 0; i < n - 1; i++ ) 

{ 

for ( int j = i + 1; j < n; j++ ) 

{ 

if ( s[i] + s[j] == key ) 

{ 

func1(n); 

     } 

else 

{ 

func2(n); 

     } 

    } 

   } 

} 

 

7) Let k be a positive integer.  Show that 1k + 2k 
+ 3k + … + nk 

 is O(nk+1). 

 

  



Some Answers 

 

1) Using the definition of Big O prove the following functions g(n) are O(f(n)) for the given 

g(n) and f(n). 

a. g(n) = 18 * n3 + 13n,  f(n)=n3 ;  prove: g(n) is O(n3) 

 

Answer:   

 

As per the definition of BigO:   

◦ An Algorithm A is order f ( n ):  Denoted O( f ( n )) 

◦ If constants k and n0 exist  

◦ Such that A requires no more than k  f ( n ) time units to solve a problem 

of size n ≥ n0  

 

Let’s find a k and n0 so that 

 kn3  > 18 * n3 + 13n  for all n ≥ n0 

  

First, let’s divide each size by n3 

 k  > 18 + 13/n2 

 

Let’s set k = 18+13 = 31; and substitute in for k. 

 31 > 18 + 13/n2 

 13 > 13/n2 

 13n2  > 13 

 n2  > 1 

 n > 1  so let n0 = 1 

 

 

       1c.   g(n) = log2n + n, f(n) = n;  prove: g(n) is O(n) 

 Let’s find constants k and n0 such that 

  kn > log2n + n  for all n ≥ n0 

   

  2kn > 2(log
2

n + n) 

  2kn > 2(log
2

n) * 2n Let k = 2 

 22n > 2(log
2

n) * 2n 

 2n > 2(log
2

n) 

 2n > n  

 True for n > 1 

 

  



 

4) What is the order of each of the following tasks in the worst case? 

a. Computing the sum of the first n even integers by using a for loop 

Answer:  O(n) 

b. Displaying all n integers in an array 

Answer:  O(n) 

c. Computing the sum of the first n even integers by using recursion 

Answer:  O(n) 

d. Computing the sum of the first n even integers by using a closed formula 

Answer:  O(1) 

e. Finding an element in an unsorted list 

Answer:  O(n) 

f. Finding an element in a sorted list 

Answer:  depends on searching algorithm.  Let’s say we have a variant of 

binary search.  Then O(logn). 

 

 

 

 

The following fragment of code computes the matrix multiplication of a[n][n] and b[n][n]. Give 

a big-oh upper bound on the running time. 

for ( int i = 0, i < n, i++ )  

for ( int j = 0, j < n, j++ )  

{ 

c[i][j] = 0.0; 

for ( int k = 0, k < n, k++ ) 

c[i][j] += a[i][k] * b[k][j]; 

   } 

Answer:  O(n3) 

 

7) Let k be a positive integer.  Show that 1k + 2k 
+ 3k + … + nk 

 is O(nk+1). 

Hint:  Represent nk+1 as (nk + nk + nk + …. + nk)  

 

 


