University of Washington, Bothell
 CSS 342: Data Structures, Algorithms, and Discrete Mathematics Complexity Problem Examples

Some practice problems to help with learning algorithm complexity and Big-O

1) Using the definition of Big O prove the following functions $g(n)$ are $O(f(n))$ for the given $g(n)$ and $f(n)$.
a. $\mathrm{g}(\mathrm{n})=18 * \mathrm{n}^{3}+13 \mathrm{n}, \mathrm{f}(\mathrm{n})=\mathrm{n}^{3}$; prove: $\mathrm{g}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
b. $g(n)=34+\log _{2} n, f(n)=\log _{2 n} n$ prove: $g(n)$ is $O\left(\log _{2 n} n\right)$
c. $g(n)=\log _{2} n+n, f(n)=n$; prove: $g(n)$ is $O(n)$
d. $\mathrm{g}(\mathrm{n})=\left(\mathrm{n}^{2}+1\right) /(\mathrm{n}+1), \mathrm{f}(\mathrm{n})=\mathrm{n}$; prove: $\mathrm{g}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n})$
2) Show that 2^{n} is $O\left(3^{n}\right)$ but 3^{n} is not 2^{n}
3) Give a big-oh upper bound on the running time of the for-loop that includes function func2(n) whose big-oh upper bound is $\mathrm{O}(\mathrm{f}(\mathrm{n})$).
```
for(inti=1;i<= n-3;i++ )
{
    func2(n);
}
```

4) What is the order of each of the following tasks in the worst case?
a. Computing the sum of the first n even integers by using a for loop
b. Displaying all n integers in an array
c. Computing the sum of the first n even integers by using recursion
d. Computing the sum of the first n even integers by using a closed formula
e. Finding an element in an unsorted list
f. Finding an element in a sorted list
5) The following fragment of code computes the matrix multiplication of $a[n][n]$ and $\mathrm{b}[\mathrm{n}][\mathrm{n}]$. Give a big-oh upper bound on the running time.
```
for ( int i=0, i < n, i++ )
    for (int j=0,j<n,j++ )
    {
        c[i][j] = 0.0;
        for (int k=0,k<n, k++ )
        c[i][j] += a[i][k] * b[k][j];
    }
```

6) Find a big-oh upper bound for the worst-case time required by the following algorithm. Assume that func1 is big $\mathrm{O}(\mathrm{f} 1(\mathrm{n})$) and func2 is big $\mathrm{O}(\mathrm{f} 2(\mathrm{n}))$:
```
bool iskey(int s[], int n, int key)
{
    for ( int i = 0; i < n - 1; i++ )
    {
        for ( int j = i + 1; j < n; j++ )
        {
        if( s[i] + s[j] == key )
        {
                                func1(n);
        }
        else
        {
        func2(n);
        }
        }
    }
}
```

7) Let k be a positive integer. Show that $1^{k}+2^{\mathrm{k}}+3^{\mathrm{k}}+\ldots+\mathrm{n}^{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}+1}\right)$.

Some Answers

1) Using the definition of Big O prove the following functions $g(n)$ are $O(f(n))$ for the given $g(n)$ and $f(n)$.
a. $g(n)=18 * n^{3}+13 n, f(n)=n^{3}$; prove: $g(n)$ is $O\left(n^{3}\right)$

Answer:
As per the definition of BigO:

- An Algorithm A is order $f(n)$: Denoted $\mathrm{O}(f(n))$
- If constants k and n_{0} exist
- Such that A requires no more than $k \times f(n)$ time units to solve a problem of size $n \geq n_{0}$

Let's find a k and n_{0} so that
$\mathrm{kn}^{3}>18 * \mathrm{n}^{3}+13 \mathrm{n}$ for all $n \geq n_{0}$
First, let's divide each size by n^{3}
$k>18+13 / \mathrm{n}^{2}$
Let's set $\mathrm{k}=18+13=31$; and substitute in for k .
$31>18+13 / \mathrm{n}^{2}$
$13>13 / \mathrm{n}^{2}$
$13 n^{2}>13$
$\mathrm{n}^{2}>1$
$\mathrm{n}>1 \quad$ so let $\mathrm{n}_{0}=1$

1c. $g(n)=\log _{2} n+n, f(n)=n$; prove: $g(n)$ is $O(n)$
Let's find constants k and no such that
$\mathrm{kn}>\log _{2} \mathrm{n}+\mathrm{n}$ for all $n \geq n_{0}$
$2^{\mathrm{kn}}>2^{\left(\log _{2} \mathrm{n}+\mathrm{n}\right)}$
$2^{\mathrm{kn}}>2^{\left(\log _{2} \mathrm{n}\right)} * 2^{\mathrm{n}} \quad$ Let $\mathrm{k}=2$
$2^{2 \mathrm{n}}>2^{\left(\log _{2} \mathrm{n}\right)} * 2^{\mathrm{n}}$
$2^{\mathrm{n}}>2^{\left(\log _{2} \mathrm{n}\right)}$
$2^{\mathrm{n}}>\mathrm{n}$
True for $\mathrm{n}>1$
4) What is the order of each of the following tasks in the worst case?
a. Computing the sum of the first n even integers by using a for loop

Answer: O(n)
b. Displaying all n integers in an array

Answer: O(n)
c. Computing the sum of the first n even integers by using recursion

Answer: O(n)
d. Computing the sum of the first n even integers by using a closed formula

Answer: O(1)
e. Finding an element in an unsorted list

Answer: O(n)
f. Finding an element in a sorted list

Answer: depends on searching algorithm. Let's say we have a variant of binary search. Then O(logn).

The following fragment of code computes the matrix multiplication of $a[n][n]$ and $b[n][n]$. Give a big-oh upper bound on the running time.

$$
\begin{aligned}
& \text { for (int } \mathrm{i}=0, \mathrm{i}<\mathrm{n}, \mathrm{i}++ \text {) } \\
& \text { for (int } \mathrm{j}=0, \mathrm{j}<\mathrm{n}, \mathrm{j}++ \text {) } \\
& \text { \{ } \\
& \mathrm{c}[\mathrm{i}][\mathrm{j}]=0.0 \text {; } \\
& \text { for (int } k=0, k<n, k++ \text {) } \\
& c[i][j]+=a[i][k] * b[k][j] ;
\end{aligned}
$$

\}
Answer: $\mathbf{O}\left(\mathbf{n}^{\mathbf{3}}\right)$
7) Let k be a positive integer. Show that $1^{k}+2^{\mathrm{k}}+3^{\mathrm{k}}+\ldots+\mathrm{n}^{\mathrm{k}}$ is $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}+1}\right)$.

Hint: Represent $\mathrm{n}^{\mathrm{k}+1}$ as $\left(\mathrm{n}^{\mathrm{k}}+\mathrm{n}^{\mathrm{k}}+\mathrm{n}^{\mathrm{k}}+\ldots .+\mathrm{n}^{\mathrm{k}}\right)$

