
University of Washington, Bothell

CSS 342: Data Structures, Algorithms, and Discrete Mathematics

Complexity Problem Examples

Some practice problems to help with learning algorithm complexity and Big-O

1) Using the definition of Big O prove the following functions g(n) are O(f(n)) for the given

g(n) and f(n).

a. g(n) = 18 * n3 + 13n, f(n)=n3 ; prove: g(n) is O(n3)

b. g(n) = 34 + log2n, f(n)=log2n; prove: g(n) is O(log2n)

c. g(n) = log2n + n, f(n) = n; prove: g(n) is O(n)

d. g(n) = (n2 + 1) / (n + 1), f(n) = n; prove: g(n) is O(n)

2) Show that 2n is O(3n) but 3n is not 2n

3) Give a big-oh upper bound on the running time of the for-loop that includes function

func2(n) whose big-oh upper bound is O(f(n)).

for (int i = 1; i <= n - 3; i++)

{

func2(n);

 }

4) What is the order of each of the following tasks in the worst case?

a. Computing the sum of the first n even integers by using a for loop

b. Displaying all n integers in an array

c. Computing the sum of the first n even integers by using recursion

d. Computing the sum of the first n even integers by using a closed formula

e. Finding an element in an unsorted list

f. Finding an element in a sorted list

5) The following fragment of code computes the matrix multiplication of a[n][n] and

b[n][n]. Give a big-oh upper bound on the running time.

for (int i = 0, i < n, i++)

for (int j = 0, j < n, j++)

{

c[i][j] = 0.0;

for (int k = 0, k < n, k++)

c[i][j] += a[i][k] * b[k][j];

 }

6) Find a big-oh upper bound for the worst-case time required by the following algorithm.

Assume that func1 is big O(f1(n)) and func2 is big O(f2(n)):

bool iskey(int s[], int n, int key)

{

for (int i = 0; i < n - 1; i++)

{

for (int j = i + 1; j < n; j++)

{

if (s[i] + s[j] == key)

{

func1(n);

 }

else

{

func2(n);

 }

 }

 }

}

7) Let k be a positive integer. Show that 1k + 2k
+ 3k + … + nk

 is O(nk+1).

Some Answers

1) Using the definition of Big O prove the following functions g(n) are O(f(n)) for the given

g(n) and f(n).

a. g(n) = 18 * n3 + 13n, f(n)=n3 ; prove: g(n) is O(n3)

Answer:

As per the definition of BigO:

◦ An Algorithm A is order f (n): Denoted O(f (n))

◦ If constants k and n0 exist

◦ Such that A requires no more than k f (n) time units to solve a problem

of size n ≥ n0

Let’s find a k and n0 so that

 kn3 > 18 * n3 + 13n for all n ≥ n0

First, let’s divide each size by n3

 k > 18 + 13/n2

Let’s set k = 18+13 = 31; and substitute in for k.

 31 > 18 + 13/n2

 13 > 13/n2

 13n2 > 13

 n2 > 1

 n > 1 so let n0 = 1

 1c. g(n) = log2n + n, f(n) = n; prove: g(n) is O(n)

 Let’s find constants k and n0 such that

 kn > log2n + n for all n ≥ n0

 2kn > 2(log
2

n + n)

 2kn > 2(log
2

n) * 2n Let k = 2

 22n > 2(log
2

n) * 2n

 2n > 2(log
2

n)

 2n > n

 True for n > 1

4) What is the order of each of the following tasks in the worst case?

a. Computing the sum of the first n even integers by using a for loop

Answer: O(n)

b. Displaying all n integers in an array

Answer: O(n)

c. Computing the sum of the first n even integers by using recursion

Answer: O(n)

d. Computing the sum of the first n even integers by using a closed formula

Answer: O(1)

e. Finding an element in an unsorted list

Answer: O(n)

f. Finding an element in a sorted list

Answer: depends on searching algorithm. Let’s say we have a variant of

binary search. Then O(logn).

The following fragment of code computes the matrix multiplication of a[n][n] and b[n][n]. Give

a big-oh upper bound on the running time.

for (int i = 0, i < n, i++)

for (int j = 0, j < n, j++)

{

c[i][j] = 0.0;

for (int k = 0, k < n, k++)

c[i][j] += a[i][k] * b[k][j];

 }

Answer: O(n3)

7) Let k be a positive integer. Show that 1k + 2k
+ 3k + … + nk

 is O(nk+1).

Hint: Represent nk+1 as (nk + nk + nk + …. + nk)

