CSS 342 Exam Name

Be clear. You don't have to comment code, but use meaningful names and proper indentation. Show all work!!! Don't erase.
On the actual exam, space was left for problem solutions.

1. Give the complexity of each of the following. Assume n items. No proof is needed. (10 pts)
(a). One insert of the insertion sort of lab1

(b). The operator+ of lab2 (the union of two IntSets)
(c). The remove of lab2 (assuming it does not resize)
(d). A binary search for one item in a sorted array
(e). Bubble sort on a linked list

2. Assume a linked list has been built as displayed. Draw the links and memory that show the status of the list after
the following function is executed. Show all work on the exam. Although your links, etc. should be correct on the
existing list, when you're done, redraw the list. (10 pts)

void List::doSomethingTotallyWeird(){ L.head% | | |/
if (isEmpty()) return;
int i = 0; N N N
Node *current = head; 10 20 30 40
whille (current = NULL && i1 < 2) { I I I -
i++;
current = current->next;

if (current == NULL) return;
Node *p = head, *p2 = head->next;
while (current = NULL) {
p->next = new Node;
p = p->next;
p->data = current->data;
current = current->next;

¥
p->next = p2;
}
3. There is no copy constructor in the Rational class (int numerator and denominator data members),
yet it works correctly, e.g., Rational x(1,2), y(x); Why? (5 pts)
4. Consider the following class. (15 pts)
class Clock {
public:
int getHours() const; // returns hours portion, non-negative
int getMinutes() const; // returns minutes portion, between 0 and 59 (inclusive
int getSeconds() const; // returns seconds portion, between 0 and 59 (inclusive)
void setHours(int); // sets hours portion, 0 <= hours <= 23
void setMinutes(int); // sets minutes portion, 0 <= minutes <= 59
void setSeconds(int); // sets seconds portion, 0 <= seconds <= 59
// advances the time by the input hours, minutes, seconds
// (0 <= minutes <= 59 and 0 <= seconds <= 59)
void advanceTime(int, int, int);
private:
}:

(a). Set the time for object clockl to be 2 hours and 15 minutes ahead of clock2. The objects have been instantiated
and are not necessarily equal.

(b). Print the difference in time (only hours, minutes) between clockl and clock2 (assume clockl is ahead of clock2
on the same day). Make sure you output non-negative values for the minutes.

5. Suppose T(n) = O(n log n). Define what this means. (5 pts)

6. Find the complexity (tight big-oh bound) for the following code. Show summations for "for" loops. Show all work.

for (int i = 1; 1 <= n; i++) (15 pts)
for (int j = i; J <= i*n; j++)
something 0(1);
for (int i = 0; 1 < n+n+n; i++)
something 0(1);

7. Consider your IntSet class of lab2:

class IntSet { (15 pts)
public:
IntSet(...); // takes up to 5 int parameters as items in the set

S // destructor, copy constructor, operator+, etc.
void insertDoubleMax(const IntSet&); // inserts double the max element of param

private:
bool* inSet; // array element is true if subscript is in the set, is never NULL
int size; // size of the array, e.g., size is 10, subscripts are 0 to 9

}:

Write insertDoubleMax which inserts double the current largest value in the IntSet parameter object. Assume that
the largest element in the array is true. Your code must work under all situations. Any code you use, you must write.

Before, A is { 0257 8}, Bis {15 12) Call from main: A.insertDoubleMax(B);
After, Ais { 0 2 5 7 8 24} Bis not changed.

Before: IntSet A:| T| F|T |F|F|T|F| T|T

After: IntSet A: [T |F |T |[F|F|T|F|T|T|F|F|F|F|F|F F‘F F‘F F‘F F‘F F‘T

01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8. class List { // lab3, no index array (25 pts)
public:
List O: Write a new member function for a List class called moveToEnd
~List Q: which will find and move the parameter item to the end of the list.

... If it is not in the list, or it is already at the end of the list, do nothing.
void moveToEnd(...);

private: You must handle all situations. Any code you use, you must write.
struct Node { You must actually move the node (move pointers around), not just
Employee* data; swap information. (Note that after the move, the list is no longer
Node* next; sorted.) Assume a fully implemented Employee class.
}:
Node* head; For example: Employee emp(40);
}; a.moveToEnd(emp);
before:
a.head-->|__| -|->__| -I->1_ | -1->1__1 -I->1_| -1->1__1| -I->1__1 -1->1__1 7]
20 30 40 50 60 70 80 90
after:
a.head-->|_| -|->__| -I->1_ | -1->1_1 -I->1__1 -1->1__1 -1->1__1I -I->I¢ | /1

20 30 50 60 70 80 90 40

