Recursion Carol Zander

For recursion, the focus is mostly on recursive algorithms. While recursive definitions will sometimes be used
in definitions (you already saw this with the definition of logical expressions), the focus will be on recursive
algorithms. In section 4.3, read through the recursive definition examples, but skip the sections on Structural
Induction and Generalized Induction. In 4.4, we will not consider proving algorithms are correct which uses
induction, material that will be covered later in the quarter.

What is recursion?

Recursion is a powerful problem-solving technique that uses a divide-and-conquer approach. You break a
problem down into a simpler (usually smaller) version of itself and then you solve that. Continue to do this
until you get down to a very simple case, called the base case.

Code-wise, it’s nothing new — a recursive function is one which calls itself (must have base case — some code
that will eventually get executed that doesn’t call itself, otherwise you get infinite recursion). All the
examples shown in these notes are coded in C++.

Steps to solving a recursive problem

1. Write down precisely what your function does. You must believe that it will do this task, even though
you haven’t written it yet.

2. Solve the base case (which is usually easy). For example: a sequence of ints, n = 0. Or an empty
array, or array with one element. Or an empty list. Or an empty tree.

3. Solve the recursive part logically. Take your problem and break it down into parts, where one part is
basically the same problem, but smaller than the original problem. For example:
n items - n-1 items
array of n items - array of n-1 items
linked list of n items = linked list of n-1 items
When you think through the solution, try to use the words you wrote down in #1.

4. Code the recursive part. Be sure to think in terms of step #1 and call your function if you find that
you need to solve that task. It takes some getting used to because you are using what you are
writing. Pretend it already exists, that you are just calling a function like you always do.

Example — Factorial

Recursive definition for Factorial of n, fact(n)=n!(e.g.,4!=4-3.2-1) are defined by 0! =1, and
fact(n) =n - fact(n-1)

forn=0,1,2,

// does not take into consideration overflow
int fact(int n) {

if (n < 0) return -1;

if (n <= 1) return 1;

return n * fact(n-1);

}

int main() {
cout « fact(5) « endl;
return O;

}
Page 1 of 3

Draw an execution tree (showing the calls and returns) of the execution of fact(5):

fact(5)
J ¥~ 5%24=120

n =5, n * fact(4)

4 o 4%6=24 Notice that solving the problem,

n =4, n * fact(3) writing the code, has nothing to do

J $—_3%2=6 with how it actually executes.
n =3, n *fact(2)
Vo~ 2*1=2
n=2,n*fact(1)
b 1

n=1,returnl

Example — Displaying a linked list backwards

class List {
friend ostream &operator<<(ostream&, const List&);

public:
List(Q; // default constructor
~List(Q); // destructor
List(const List&); // copy constructor
bool insert(NodeData*); // insert one Node into list
void buildList(ifstream&); // build a list from datafile
void printBackwards() const; // print the list iIn reverse

// needs many more member functions to become a complete ADT

private:
struct Node { // the node in a linked list
NodeData* data; // pointer to actual data, operations in NodeData
Node* next;
}:
Node* head; // pointer to first node
void printBackwardsHelper(Node*) const; // actual backwards printer

¥

list.head-—>] | -|--->1 | -1--->1_| -1--->1_| /I
l l l l

10 20 30 40
“b” <y ‘y* <,
void List::printBackwards() const { // public interface function
printBackwardsHelper(head);
}
void List::printBackwardsHelper(Node* current) const { // private utility
if (current = NULL) {
printBackwardsHelper(current->next);
cout << *current->data;
}
}

Page 2 of 3

Draw an execution tree (showing the calls and returns) of the execution of printBackwardsHelper(head):

printBackwardsHelper(—>10) output
NZ
—10, pbh(=>20), cout 10b
N
=20, pbh(=30), cout 20 x
\%
-30, pbh(=>40), cout 30y

N
=40, pbh(NULL), cout 40z

vl

NULL

Example — Does a char array form a palindrome? You are given the char array and its size (or length).

Palindrome — reads the same forwards and backwards, e.g., remove punctuation:
dad madam Dammit I’'m mad
A man, a plan, a canal, Panama
I’'m a lasagna hog, go hang a salami
Doc, note, | dissent, | diet on cod
Are we not drawn onward to new era?

// given an char array, it will return whether the char array is a palindrome
bool isPalindrome(char a[], size) {
if (size < 0) return false;

if (size == 0 || size == 1)
return true; // base case
return (a[0] == a[size-1] // Tirst and last char are the same

// remaining char array, without first and last char is a palindrome
&& isPalindrome(&a[l], size-2);

Page 3 of 3

