
Quiz #1 CSS 342 Winter 2012

Quiz #1
(February 22, 2012)

Your Names: __

Question #1. Consider the following independent code snippets (a)-(d).

What, if any, coding errors are exhibited in each? Be brief, specific, and complete.

Sketch a diagram of the situation in memory in each case – to help you (reason about the code) and to help me

(see your thinking more clearly and grade effectively).

(a) int *pnInt1 = new int(10);

 int *pnInt2 = *pnInt1;

(b) int nNum, *pnInt1, *pnInt2 = new int;

 pnInt1 = pnInt2;

 *pnInt1 = nNum * 2;

 pnInt2 = &nNum;

 delete pnInt1;

 cout << *pnInt2;

 delete pnInt2;

(c) int pnNum[3], &rnInt = pnNum[2];

 int *pnInt = &rnInt;

 if (pnInt != NULL && rnInt = 0)

 pnInt = pnNum + 1;

(d) int myFunc(int nNum)

 {

 int *pnInt = new int;

 *pnInt = nNum * nNum;

 cout << *pnInt;

 return *pnInt;

 }

Quiz #1 CSS 342 Winter 2012

Question #2. The following are independent functions, some of which use the ListNode declaration below.

What coding errors, if any, are present in each function? Be brief, specific, and complete.

struct ListNode

{

 int item;

 ListNode * next;

};

(a) // prints the items stored in the list, starting from a given position
 void printListItems(ListNode * poListPos)

 {

 ListNode * poCurr = poListPos;

 while (poCurr.next != NULL)

 {

 cout << poCurr.item << endl;

 poCurr = poCurr.next;

 }

 }

(b) // deletes the first node of a linked list
 void deleteFirst(ListNode * poListHead)

 {

 ListNode * pTemp = poListHead;

 poListHead = poListHead->next;

 delete pTemp;

 }

(c) // puts a given character string in quotes, e.g. quiz becomes “quiz”
 char * addQuotesToString(char * pcOriginal)

 {

 // allocate space for the new string; it needs two extra cells

 int nNewLength = strlen(pcOriginal) + 2;

 char * pcQuoted = new char[nNewLength];

 // copy the original string to the destination,

 // starting with an offset to allow space for the initial quote: ‘“’

 for (int i=1; i<nNewLength-1; i++)

 pcQuoted[i] = pcOriginal[i-1];

 // add the quote symbols: one at the start, and one at the end

 pcQuoted[0] = '“';

 pcQuoted[nNewLength-1] = '”';

 return pcQuoted;

 }

