

Radix Sort Carol Zander

The radix sort is very different from the other sorting algorithms that we have looked at so far, since no
comparisons are ever done between array elements. The basic idea is to group the elements into sets,
where the sets can be placed in a known order.

An example is sorting 3-digit numbers between 000 and 999. All numbers that start with a 0 can be placed in a
group, all numbers starting with 1 in another, and so. After examining the first digit, the order to place the
sets in is known, but the items must still be sorted within each set. This is performed using the same process
on the second digit of the number (recursively or iteratively). In practice, this is usually done in the reverse
order of the digits, so that the most important digit is examined last. However, for each step, this means to
keep the elements with the same digit at the current position in the same order that they were in from the
previous step to make sure that the numbers stay sorted correctly. Typically queues are used:

void radixSort(int a[], int size, int d) { // d is the number of digits

 for (j = d; j > 0; j--){
 initialize 10 empty queues
 for (i = 0; i < size; i++){
 k = jth digit of a[i]
 insert a[i] into queue k
 }
 Replace the items in a with all the items in group 0, group 1, etc.
 }
}

The data to be sorted -- stored somewhere, possibly a data file:

 64 8 216 512 27 729 1 0 343 125 713 525 537 347 382

Pass 1 – sort by the least significant digit (put numbers into the queue, enqueue)

 0 1 2 3 4 5 6 7 8 9

 0 1 512 343 64 125 216 27 8 729
 382 713 525 537
 347

Pass 2 – sort by the next significant digit (dequeue, then enqueue; need counts of how many are in each queue because
you may insert into a queue from a later pass before you have removed all the numbers from an earlier pass)

 0 1 2 3 4 5 6 7 8 9

 0 512 125 537 343 64 382
 1 713 525 347
 8 216 27
 729

Pass 3 – sort by the third significant digit

 0 1 2 3 4 5 6 7 8 9

 0 125 216 343 512 713
 1 347 525 729
 8 382 537
 27
 64

Now empty out the queues starting at zero, and the numbers are sorted.

