
Language	Paradigms	 	 	 Carol	Zander	
	 	 	
Imperative	or	structured/procedural	programming	‐‐	Process‐oriented.	

Based	on	the	von	Neumann	architecture	where	data	and	programs	are	stored	in	the	same	memory.		The	CPU				is	
separate	from	the	memory,	so	instructions	and	data	must	be	piped	from	memory	to	the	CPU.	Results	of	operations	
are	moved	back	to	memory.	

	
Because	of	this	architecture,	the	central	features	are:		

 variables	(model	the	memory	cells)		
 assignment	statements	(based	on	piping	operation)		
 iteration	form	of	repetition	(most	efficient	method).	

	
Decompose	a	problem	algorithmically.		Each	module	in	the	solution	denotes	a	major	step	in	the	overall	process.			

	
Object‐oriented	‐‐	Data‐oriented.			

It	grew	out	of	structured	programming,	but	supported	data	abstraction	which	encapsulates	processing	with	data	
objects,	hiding	access	to	data.	Concentrates	on	the	use	of	abstract	data	types	to	solve	problems.	

	
Decompose	a	problem	by	the	key	abstractions	in	the	problem	domain.		The	key	abstractions	become	the	objects.		
An	object	is	a	tangible	entity	exhibiting	some	well‐defined	behavior.		Objects	do	things	that	we	ask	by	sending	them	
messages.	

	
What	is	the	difference?		The	algorithmic	view	highlights	the	ordering	of	events,	and	the	object‐oriented	view	

emphasizes	the	agents	that	either	cause	action	or	are	the	subjects	upon	which	these	operations	act.	
	
Functional	‐‐	Primary	means	of	computing	is	by	applying	functions	to	given	parameters.	
	
Logic	programming	‐‐	Rule‐based.		Rules	are	specified	in	no	particular	order	and	the	language	implementation	

figures	out	a	result.	
	
Basics	of	a	Typical	C++	Environment		(assume	source	code,	a	program,	is	created)	
	
Preprocessor	–	Preprocessor	program	processes	preprocessor	code.		It	executes	automatically	before	the	

compiler	stage.		It	obeys	special	commands	called	preprocessor	directives	which	indicate	that	certain	
manipulations	are	to	be	performed	on	the	program	before	compilation.		These	manipulations	typically	consist	
of	including	other	files	or	telling	the	compiler	some	definition	code	may	be	repeated	so	don’t	store	it	twice.	

	
	 E.g.		Usually	in	files	defining	classes,		#ifndef		tells	the	compiler	to	do	what	follows	if	the	definition	is	not	

already	in	the	symbol	table	under	the	given	name	(huge	data	structure	of	every	identifier	in	your	program	and	
everything	the	compiler	needs	to	know	about	it).	The		#define	says	to	define	it	associated	with	the	given	name	
as	follows	in	the	code.		The		#endif		terminates	the		#ifndef		directive.	

	
Compiler	–	Compiler	creates	object	code	and	stores	it	on	disk.		The	compiler	is	a	special	type	of	translator.		It	

translates	source	code	into	machine	language	code	(same	as	object	code).		Errors:		Eventually	compiler	errors	
become	no	big	deal.		You	leave	off	a	semicolon,	misspell,	forget	a	parenthesis,	mess	up	your	curly	braces,	etc.	

	
Linker	–	Linker	links	the	object	code	with	the	libraries,	creates	an	executable	file	and	stores	it	on	disk.		When	you	

refer	to	something	in	a	library,	the	compiler	leaves	a	hole	and	the	linker	must	resolve	the	addressing;	in	other	
words,	find	it	to	create	a	complete	executable	file.		Errors:		If	you	get	a	linking	error,	it	can’t	find	something.		
Usually	it’s	a	typo.	Function	signatures	(the	header)	etc.,	must	be	identical.	Also,	your	#includes	may	be	wrong.	

	
Loader	–	Loader	puts	the	program	in	memory	so	the	CPU	can	take	each	instruction	and	execute	it.		It	will	likely	store	

new	data	values	as	the	program	executes.	
	
What	is	the	difference	between	a	compiler	and	interpreter?		While	a	compiler	translates	high	level	

language	into	machine	code	to	later	be	loaded	and	executed,	an	interpreter	takes	the	high	level	code	and	
immediately	carries	out	the	instruction.		There	are	also	hybrid	systems	where	high	level	code	is	translated	into	
intermediate	code	(e.g.,	Java	byte	code)	and	then	the	instruction	is	performed	by	an	interpreter.	

	


