Final Exam Questions Study Guide (Draft!)

These questions are for review only and are not calibrated for time!

[2-3 Tree]: Given the following 2-3 tree declaration, implement the insert right () function.

template<class T> class BTree {
public:
class iterator;
T* insert(T* data);
iterator begin();
iterator end();
//...
private:
struct Node {
Node(T* data, Node* left=0, Node* middle=0);
bool is_leaf() {return left_ == 0;}
Node* insert_leaf(T* data, T**found);
Node* insert_left(T* data, T**found);
Node* insert middle(T* data, T**found);
Node* insert right(T* data, T**found);
Node* insert(T* data, T** found);
//...
T* datal_;
T* data2_;
Node* parent_;
Node* left_;
Node* middle_;
Node* right_;
}i
}i

template<typename T>
typename BTree<T>::Node*
BTree<T>::Node::insert (T* data, T** found) {
if (is_leaf()) {
return insert leaf(data, found);
} else if (*data < *datal_) {
return insert_ left(data, found);
} else if (*datal_ < *data && (!data2_ || *data < *data2_)) {
return insert_middle(data, found);
} else if (data2_ && *data2_ < *data) ({
return insert_right(data, found);
} else if (*datal_ < *data) {
*found = data2_;
return O;
} else {
*found = datal_;
return O;

[2-3 Tree]: Given the previous declaration, implement the begin () and end () functions and the
iterator class with operator* (), operator++(), operator--(), operator+(),
operator- () and operator==(). Do you also need to implement operator=()? Why or
why not?

[Adjacency Matrix]: The adjacency matrix for an undirected graph is symmetrical about its diagonal.
That is, (i, j) is an edge if and only if (j, i) is an edge. You decide to take advantage of this to save
memory space by only holding the lower triangle, i <=j. The first row (row 0) will have one entry, the
second two entries, etc. So a graph with N vertices will have N * (N+1) / 2 entries (sum from 1 to N).

Assuming the following declaration, implement the AdjacencyMatrix: :edge () function
(returns true if there is an edge between i and j).

class AdjacencyMatrix {
public:
AdjacenceMatrix(int n)
: n_vertices_ (n), edges (n*(n+l)/2, false) {}
void add_edge(int i, int j);
bool edge(int i, int j);
private:
int n_vertices_;
vector<bool> edges_;

}i

[Adjacency Matrix]: Not realizing that std: : vector<bool> is optimized for space, you decide to
save even more space by implementing your own bitmap (http://en.wikipedia.org/wiki/Bitmap). Do it.

[Graphs]: Suppose a graph is given according to the following declaration:

class Graph {
public:
//...
int color();
private:
struct Vertex {
//...
vector<Vertex*> successors_;
int color_;
}i

vector<Vertex*> vertices_;

}i

We wish to assign a positive integer value, called color, to each vertex such that no two vertices sharing

http://en.wikipedia.org/wiki/Bitmap

an edge have the same color value. Clearly, we could just enumerate vertices and assign N different
colors but we'd really like to do this with the smallest number of distinct color values.

Since that is known to be an NP-complete problem, we will just use this heuristic: sort the vertices by
degree (number of outgoing edges) and assign each vertex the lowest-number color not already taken
by one of its neighbors. Implement the color () function using this heuristic. It should return the
highest color number allocated. Add additional fields or methods as required. [since this is a study
question, I dare you to make this an actual, running program].

[Graph]: Given the following graph declaration:
public:
//...
private:
struct Vertex ({

//...

vector<Vertex*> successors_;
int color_;
}i

vector<Vertex*> vertices_;

}i

Assume the graph is directed. Implement a function to determine whether the graph is a DAG (directed
acyclic graph). Add fields and methods as required.

[Graph]: Given an undirected graph:
1. write a function that verifies every node has even degree
2. write a function that finds an Eulerian circuit (path from node back to itself that traverses every
edge exactly once). See: http:/en.wikipedia.org/wiki/Eulerian path#Fleury.27s algorithm
[implement it!]

[Destructors]: What is the output of the following program:

#include <iostream>
#include <string>

using namespace std;

class Base {
public:
Base(): n_(count_++) {cout << "Creating a Base of operations " << n_ << endl;}
virtual ~Base() {cout << "Base " << n_ << " destroyed\n";};
private:
static int count_;
int n_;

}i

class FirstBase: public Base {
public:

file:///home/morris/uw/css343/2013-q4/final-exam/2.%20http://en.wikipedia.org/wiki/Eulerian_path#Fleury.27s_algorithm

FirstBase() {cout << "Creating a BaseBall object\n";}
virtual ~FirstBase() {cout << "Can't get to first base\n";}
private:

}i

class StarBase: public Base {
public:

StarBase(const string& name): name_(name) {cout << "Creating StarBase " << name_
<< endl;}

virtual ~StarBase() {cout << "StarBase " << name_ << " overrun by aliens.\n";}
private:

StarBase();

string name_;

i
int Base::count_ = 0;

int main() {
Base* alpha = new StarBase("alpha");
StarBase* beta = new StarBase("Beta");
StarBase* gamma = new StarBase("Gamma");
StarBase delta("Delta");
StarBase epsilon("Epsilon");
Base* ballgame = new FirstBase();
{
StarBase omega = StarBase("Omega");
delete ballgame;

}

Base* b;

b = beta;
delete b;
delete gamma;
return O;

[RAII/Destructors]: Implement the std: : shared_ptr template class
http://www.cplusplus.com/reference/memory/shared ptr/

[Virtual Functions]: What is the output of the following program:

#include <iostream>
using namespace std;

class Base {
public:
virtual void foo(int flag) {
cout << "Base::foo()";
if (flag) {
cout << " ";
bar (0);
}

http://www.cplusplus.com/reference/memory/shared_ptr/

void bar(int flag) {
cout << "Base::bar()";
if (flag) {
cout << " ";
foo(0);
}
}
}i

class Derived: public Base {
public:
virtual void foo(int flag) {
cout << "Derived::foo()";
if (flag) {
cout << " ";
bar (0);
}

}
void bar(int flag) {

cout << "Derived::bar()";
if (flag) {

cout << " ";

foo(0);

}
}i

main() {
Base* bp;
Derived* dp;

Base base obj;
Derived derived obj;

bp = &base_obj;

cout << "Base pointer to Base object" << endl;
bp->foo(1);

cout << endl;

bp->bar(1);

cout << endl;

cout << endl;

bp = &derived obj;

cout << "Base pointer to Derived object" << endl;
bp->foo(1);

cout << endl;

bp->bar(1);

cout << endl;

cout << endl;

dp = &derived _obj;

cout << "Derived pointer to Derived object" << endl;
dp->foo(1l);

cout << endl;

dp->bar(1l);

cout << endl;

[Inheritance & Virtual Functions]: The following program relies on knowledge of the
implementation details of a particular C++ compiler and cannot be expected to work as intended in all
cases (we've ventured into the home territory of the evil nasal demons), but it does work as intended
using g++ on a Linux system (and probably works under MS Visual Studio). Given what you know
about C++ language implementation details, what is the output of the following program? Why?

Hint: think about how inheritance and virtual functions are implemented. Copy the code to a file and
run it to verify your hypothesis.

#include <iostream>
#include <string>
using namespace std;

class Player {
public:
Player(const string& name) : name_(name) {}
virtual void print() const {cout << "Player " << name_ << endl;}
const string& name() const {return name_;}
private:
string name_;

}i

class E1f : public Player {
public:

Elf (const string& name, const string& weapon)

: Player(name), weapon_(weapon) {
}
virtual void print() const {
cout << "Elf " << name() << " wielding " << weapon_ << endl;

}
private:

string weapon_;

}i

class Hobbit : public Player {
public:
Hobbit (const string& name, const string& food)
: Player(name), food_(food) {
}
virtual void print() const {
cout << "Hobbit " << name() << " eating " << food_ << endl;
}
private:
string food_;
}i

void do_print(const Player* player) {player->print();}

int main() {
Elf legolas("Legolas", "Bow and Arrow");
Hobbit samwise("Samwise Gamgee", "lembas wafer");
legolas.print(); samwise.print(); cout << endl;
void** pl = reinterpret_ cast<void**>(&legolas);

void** p2 = reinterpret_ cast<void**>(&samwise);

void* p3 = *pl; *pl = *p2; *p2 = p3;
do_print(&legolas); do_print(&samwise); cout << endl;
return O;

[Finite-State Machine]: Define the states and events of a vending machine. Write out a state transition
table (row for each state, column for each event).

[Finite-State Machine]: Implement the vending machine FSM defined above using a lookup table
(std: :map) to determine the next state.

[Regular Expression/Finite-State Automaton]: Write a regular expression to match any word with

1. atleast 4'a's. (e.g. Guadalajara, abracadabra, paraphernalia)

2. exactly 4'a's. (e.g. amalgamation, baccalaureate, catamaran).
Write an equivalent finite-state automaton. Test the expression using grep, sed, or Perl, or any other
R.E.-breathing utility using data from the Linux system file /usr/share/dict/words. See also:
https://xkcd.com/208/

[Regular Expression]: construct a regular expression over the symbols {0, 1} to match strings with
odd parity (odd number of 1-bits).

[Context-Free Grammars]: Construct a CFG grammar over the terminal symbols {a, b} such that it
contains at least as many a's as b's.

[Context-Free Grammars]: Construct a CFG grammar over the terminal symbols {a, b, c} that match
a"b"c™" forn > 0 and m>= 0. Try doing this without any epsilon-productions.

[Context-Free Grammars]: Given the following grammar (matched parentheses):

S -> (A)A
A > €
A -> (a)A

Show a derivation/parse tree for the string (((())) () (())).

[Context-Free Grammars]: construct a grammar to recognize matched parentheses that does not use
e-productions.

https://xkcd.com/208/

