CSS 343 Exam The actual exam has space for your work. Be as clear as possible You don't have to comment

1. Assume a Binary Tree class has a member function call play and a tree has been built as shown.

What's the output of main? Show the execution tree. (10 pts)
int BinTree::play() const { main: BinaryTree T;

int n = 0; ce

return helper (root, n); cout << T.play() << endl;

}

int BinTree: :helper (Node* current, int n)const {

if (current == NULL)
return n;
if (current->right != NULL || current->left != NULL)

return 1 + helper (current->left, n+l) + helper(current->right, n+l);
return 0;

/A\A
SN
{ H/ \I

Execution tree (the = designates return values at internal nodes):
R = 1+5+4 = 10 Output: 10
B,1: 1 + L + R = 1+0+4=5 cC, 1+2+1=4
// ‘LK s ™ / 5 \/\ |
1+ L + R =14+0+3=4 null, 2 1 +L + R =1+0+0=1
a// \% ﬁ ° N
null, 3 H,3 I,3

2. Give the complexity (tight big-oh) of the following. You need not show work. (15 pts)
(a). Find the smallest value in an AVL tree of n items. O(log n)
(b). Find the smallest value in a binary heap of n items. o(1)
(c). Insert one item into a binary heap of n items. O(log n)
(d). Destructor for a binary search tree of n items. O(n)
(e)- Remove one edge in a graph of n nodes and E edges stored in an adjacency matrix. o(1)
(f). The maximum number of unique edges in an undirected graph of n nodes. O(n2)

(9). Breadth-first ordering on a graph with n nodes and E edges stored in an adjacency matrix. O(n2)

3. Given the following characters and frequency of occurrence in a message, use the Huffman encoding algorithm
to find a unique encoding for the characters. Show all work. (10 pts)

Letter Frequency
a 10 €

b 15 €& start with these two, a and b, then delete from list, add “ab 25%
c 20 € these would be next, c and d, delete, add “cd 42”7, and so on
d 22 &
e 30
Final answer:
cdabe (97)
0/ \ 1 a 100
/ abe (55) b 101
/ 0/ \ c 00
cd(42) ab (25) \ 1 d 01
/ 0\ / N\ \ e 11

0/ \ 1 0/ \ 1 \
c(20) d(22) a(l0) Db(1ld) e (30)

4. Demonstrate the heap sort (done efficiently) on the values: 10 5 7 11 6 3 2 13 15 1 4.
Show only the first three passes of the algorithm (three values are sorted). There is no code writing.
Redraw your heaps when needed for clarity. (15 pts)

Build a heap using the O(n) algorithm (work is not shown):

Final heap: 1
/ \
4 2
/ \ / \
11 5 3 7
/\ / \

2
/ \
4 3
/N /N
11 5 10 7
/ N\ / N\
13 15 6 1
3
/ \
4 6
/A /N
11 5 10 7
/ N\ / N\
13 15 2 1
4
/ \
5 6
/A /N
11 15 10 7

5. Given the following AVL tree structure (letters represent appropriate values).
Suppose a value was added as shown (in the P position).

Show the balanced tree after the insertion. Show each step. (5 pts)
A
/ \ Which node is unbalanced? B
B cC
/ \ / \ Do a right-right rotation.
D E F G
\ / N\ / \
H I J K L
/ / N\
M N 0
/
P
Final answer:
A
/ \
E C
/ \ / \
B J F G
/ \ / N\ / \
D IN @) K L
\ / /
H M P
7. Consider your Polynomial class only the array content contains double : (10 pts)
class Poly {
friend
public:
Poly (int coeff=0, int maxExp=0); // constructor, sets size=maxExp+l
~Poly () // destructor
Poly(const Poly &); // copy constructor
void integrate(); // integrate poly
private:
double* ptr; // pointer to first array element
int size; // size of the array

}i

Write the member function integrate which replaces the current polynomial with its integral (as in calculus). E.g.,

Poly A(0,4);

cin >> A; // user enters values so A = +10x"4 -7x"2 +3
A.integrate () ;

cout << A << endl; // outputs: +2.00x"5 -2.33x"3 +3.00x

void Poly::integrate() {
double* temp = new double[size+l];

temp[0] = 0.0;

for (int i = 0; 1 < size; 1i++) {
temp [i+1] = ptr[i]/ (i+1);

}

delete [] ptr;

ptr = temp;
temp = NULL;
sizet++;

8. Implement function(s) for a BSTree class that determine whether or not the tree is fully complete (all levels
filled completely). Assume usual Node, with member data: NodeData* data, Node* left, Node* right

Any function you use, you must write. For example:

T1: A Sample main:
/ \ BSTree T1;
B C BSTree T2;
/ 0\ / 0\ bool complete;
D E F G e
/N /N /N / \ complete = Tl.isComplete () ;
H I J KL M N P complete = T2.isComplete();
T2: A
/ \
B C
/ \ / \
D E F G
/\ /
H IJ
bool BSTree::isComplete () const {
return depthBalanceHelper (root) != -1;

}

int BSTree::depthBalanceHelper (Node* current) const {
if (current == NULL)
return 0;

int leftDepth = depthBalanceHelper (current->left);
if (leftDepth == -1)
return -1;

int rightDepth depthBalanceHelper (current->right) ;

if (rightDepth == -1)
return -1;
if (leftDepth != rightDepth)

return -1;

return leftDepth+l;

// returns true
// returns false

