UNIVERSITY of WASHINGTON | BOTHELL

(CSS430
Deadlocks

Textbook Chapter 7

Instructor: Stephen G. Dame
e-mail: sdame@uw.edu

These slides were adapted from the OSC textbook slides (Silberschatz, Galvin, and Gagne),
Professor Munehiro Fukuda and the instructor’s class materials.

V0.2 (CSS430 Deadlocks

WKP 17

“The competent programmer is fully
aware of the strictly limited size of his
own skull; therefore he approaches the

programming task in full humility, and
among other things he avoids clever
tricks like the plague.”

- Edsger Dijkstra

V0.2 (CSS430 Deadlocks

Deadlock Examples 1

Kansas Legislature: “when two trains approach each other
at a crossing, both shall come to a full stop and neither
shall start up again until the other has gone.”

Two processes exchange a long message with each other, but their socket buffer
is smaller than the message.

Process
B
£, R o

V0.2 (CSS430 Deadlocks

Deadlock Examples 2

Bridge crossing example: traffic only in one direction
where two cars are driving from the opposite direction.
A deadlock is not resolved unless one gets back up.

Two processes try to go into the same nested critical section in a different order.

P Py
wait (A); W)
wait (B); wait(A)

V0.2 (CSS430 Deadlocks

System Model

" Resourcetypes R, R,, ..., R

CPU cycles, memory space, I/O devices

® Each resource type R has W, instances

® Each process utilizes a resource as follows:
request
use
release

V0.2 (CSS430 Deadlocks

V0.2

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously:

(D Mutual exclusion: only one process at a time can use a
resource.

@ Hold and wait: a process holding resource(s) is waiting to
acquire additional resources held by other processes.

@ No preemption: a resource can be released only voluntarily
by the process holding it upon its task completion.

@ Circular wait: there exists a set {P,, P;, ..., Py} of waiting
processes such that P, is waiting for a resource that is held by
P,, P, is waiting for a resource that is held by P,, ..., P_; is
waiting for a resource that is held by P, and P, is waiting for a
resource that is held by P,,.

(CSS430 Deadlocks

Resource-Allocation Graph

A set of vertices V and a set of edges E

€ V is partitioned into two types:

v P={P,, P,, ..., P}, the set consisting of all the
processes in the system

v R={R,, R,, ..., R}, the set consisting of all resource
types in the system

¢ request edge — directed edge P,— R,

¢ assignment edge — directed edge R, — P,

(CSS430 Deadlocks

Resource-Allocation Graph

€ Process G

€ Resource Type with 4 instances

R,

€ P; requests instance of R; e—’m

Request edge
Sequence of

process resource € P.is holding an instance of R;

tilizati
utilization Assignment edge

_ ® P releases an instance of R; e

V0.2 (CSS430 Deadlocks

Resource-Allocation Graph

-
N\
N\
N\
N\
N\
N\
N\
N\
N\
\
// d
// g
P
o’

@
@
R,

Is deadlock possible?

V0.2 (CSS430 Deadlocks

Resource-Allocation Graph

V0.2 (CSS430 Deadlocks

Resource Allocation Graph With A
Cycle But No Deadlock

/ ; ® If graph contains no

cycles = no deadlock.

-@
@ /@ " If graph contains a cycle
N

if only one instance per
resource type, then
deadlock.

if several instances per
resource type, possibility
of deadlock.

V0.2 (CSS430 Deadlocks

Methods for Handling Deadlocks

® Ensure that the system will never enter a
deadlock state.

® Allow the system to enter a deadlock state
and then recover.

® Ignore the problem and pretend that
deadlocks never occur in the system; used by
most operating systems, including UNIX.

(CSS430 Deadlocks

Deadlock Prevention

Restrain one of the following four conditions:

(1 Mutual Exclusion — not required for sharable resources. (but not work always.)
@2 Hold and Wait — must guarantee that whenever a process requests a resource,
it does not hold any other resources.
Require a process to request and be allocated all its resources before its
execution: Low resource utilization
Allow process to request resources only when the process has none:
starvation possible.
OR Preemption —
If a process holding some resources requests another resource that cannot
be immediately allocated to it, all resources currently being held are released.

If a process P1 requests a resource R1 that is allocated to some other
process P2 waiting for additional resource R2, R1 is allocated to P1.

@ Circular Wait - impose a total ordering of all resource types, and require that
each process requests resources in an increasing order of enumeration.

V0.2 (CSS430 Deadlocks

Deadlock Prevention
Circular Wait

Each process can request resources only in an
increasing order of enumeration.

Not allowed Order(tape)=1 < Order(printer)=4
/

V0.2 (CSS430 Deadlocks

Safe State

€ When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

€ System is in safe state if there exists a sequence
<P B
of ALL the processes in the systems such that for each P, the

resources that P; can still request can be satisfied by currently
available resources + resources held by all the P, with j <i

&€ Thatis:

v'If P, resource needs are not immediately available, then P;can wait
until all Pj have finished.

v" When Pj is finished, P;can obtain needed resources, execute,
return allocated resources, and terminate.

When P; terminates, P, , can obtain its needed resources, and so
on.

A system is in a safe state only if there
exists a only if there exists a

(CSS430 Deadlocks

Basic Facts

€ If a system is in safe state = no deadlocks
& If a system is in unsafe state = possibility of deadlock

€ Avoidance = ensure that a system will never enter an
unsafe state.

(CSS430 Deadlocks

Safe, Unsafe , Deadlock State

deadlock

V0.2 (CSS430 Deadlocks

Avoidance algorithms

® Single instance of a resource type
Use a resource-allocation graph

® Multiple instances of a resource type
Use the banker’ s algorithm

(CSS430 Deadlocks

Resource-Allocation Graph Scheme

¢ Claim edge P, — R;indicated that process P, may request
resource R; represented by a dashed line

€ Claim edge converts to request edge when a process
requests a resource

€ Request edge converted to an assignment edge when the
resource is allocated to the process

€ When a resource is released by a process, assignment edge
reconverts to a claim edge

€ Resources must be claimed a prioriin the system

(CSS430 Deadlocks

Resource-Allocation Graph

V0.2 (CSS430 Deadlocks

Unsafe State In Resource-
Allocation Graph

V0.2 (CSS430 Deadlocks

Resource-Allocation Graph
Algorithm

€ Suppose that process P, requests a resource R;

€ The request can be granted only if converting the request
edge to an assignment edge does not result in the formation
of a cycle in the resource allocation graph

(CSS430 Deadlocks

Deadlock Avoidance

Resource-Allocation Algorithm

Processes supply OS with
future resource requests

e (future request)

Works only with single
instance resource types.

CSS430
Deadlocks

Deadlock Avoidance
Banker’s Algorithm - Definitions

Multiple resource instances

Each process must a priori claim maximum use
When a process requests a resource it may have to
wait

When a process gets all its resources it must return
them in a finite amount of time

(CSS430 Deadlocks

Deadlock Avoidance
Banker’s Algorithm - Definitions

Let 7 = number of processes, and 1 = number of resources types.

Available — Vector of length m indicates the number of available
resources of each type. If Available] j| = k, then k instances of
resource type R; are available.

Max : n x m matrix. Defines the maximum demand of each process.
If Max[i,j] = k, then process P; may request at most k instances of
resource type K.

Allocation : n x m matrix. Defines the number of resources of each
type currently allocated to each process. If Allocation|i,j] = k, then
process P; is currently allocated & instances of resource type R..

Need : n x m matrix. Indicates the remaining resource need of each

process. If Need[i,j] = k, then process P, may need k more instances of
resource type R; to complete its task. Note that

Need|i,j] = Maxlij] — Allocationli,j]

(CSS430 Deadlocks

Safety Algorithm

Let Work and Finish be vectors of length m and 7,
respectively. Initialize:

Work = Available

Finish [i] = false for i=0, 1, ..., n-1

Find an 7 such that both:

(a) Finish[i] = false

(b) Need. < Work

If no such i exists, go to step 4
. Work = Work + Allocation

Finish[i] = true

go to step 2

If Finish [i] == true for all 7, then the system is in a

(CSS430 Deadlocks

Resource-Request Algorithm for Process P,

Request = request vector for process P, If Request, [j| = k then process P,
wants k instances of resource type R;

1. If Request; < Need. go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

. If Request; < Available, go to step 3. Otherwise P, must wait, since
resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state
as follows:

Available = Available — Request,
Allocation; = Allocation; + Request,;
Need; = Need, — Request,
If safe = the resources are allocated to P,

If unsafe = P, must wait, and the old resource-allocation state is
restored

(CSS430 Deadlocks

Deadlock Avoidance
Banker’s Algorithm

® 5 processes PO through P4
® Each process must claim Max use in advance.
® Resource Types: A (10 instances), B (5instances), and C (7 instances)

Allocation Need Initial Avail
A C B A B C A B C
10 5 7 332

Process

PO 0
P1 2
P2 3
P3 2
P4 0

C
3
2
%)
1
1

Snapshot at time T);:

V0.2 (CSS430 Deadlocks

V0.2

Deadlock Avoidance
Banker’s Algorithm —

" Check that Request < Available (thatis, (1 0 2) < (3 3 2) = true

® Execute safety algorithm shows that sequence < P1, P3, P4, PO, P2>
satisfies safety requirement

Allocation Need Initial Avail
A C B A B C A B C
10 5 7 2 30

Process

PO 0
P1 3
P2 3
P3 2
P4 0

C
3
2
%)
1
1

Snapshot at time T7:

(CSS430 Deadlocks

Deadlock Avoidance
Banker’s Algorithm —

® Check that Request < Available (thatis, (330)<(332) =

Allocation Need Initial Avail
A C B A B C A B C
10 5 7 O 0 2

Process

PO 0
P1 2
P2 3
P3 2
P4 3

C
3
2
%)
1
1

Snapshot at time T7:

(CSS430 Deadlocks

Deadlock Avoidance
Banker’s Algorithm —

® Check that Request < Available (thatis, (430)<(332) =

Allocation Need Initial Avail
A C B A B C A B C
10 5 7 3 32

Process

PO 0
P1 2
P2 3
P3 2
P4 0

C
3
2
%)
1
1

Snapshot at time T7:

(CSS430 Deadlocks

Deadlock Detection

€ Allow system to enter deadlock state
€ Detection algorithm

€ Recovery scheme

(CSS430 Deadlocks

Single Instance of Each Resource Type

® Maintain wait-for graph
Nodes are processes
P, — P; if P;is waiting for P;
" Periodically invoke an algorithm that searches for
a cycle in the graph. If there is a cycle, there
exists a deadlock

® An algorithm to detect a cycle in a graph requires
an order of n? operations, where n Is the number

of vertices in the graph

(CSS430 Deadlocks

Resource-Allocation Graph and
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

V0.2 (CSS430 Deadlocks

Several Instances of a
Resource Type

€ Available: A vector of length m indicates the number of
available resources of each type.

€ Allocation: An nx m matrix defines the number of
resources of each type currently allocated to each process.

€ Request: An nx m matrix indicates the current request of
each process. If Request [i] = k, then process P; is
requesting kK more instances of resource type. R..

(CSS430 Deadlocks

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
Work = Available
Fori=1,2, ..., n, if Allocation; = 0, then
Finish[i] = false;otherwise, Finish[i] = true

2. Find an index / such that both:
Finish[i] == false
Request; < Work

If no such j exists, go to step 4
3. Work = Work + Allocation;
Finish[i] = true
go to step 2

4. It Finish[i] == false, for some i, 1 < i <= n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then P;is
deadlocked

This algorithm requires an order of O(m x n? operations to detect
whether the system is in deadlocked state.

(CSS430 Deadlocks

V0.2

Detection Algorithm Example

Five processes P, through P,;

Three resources types A (7 instances), B (2 instances), and C (6
instances)

Sequence <PO0, P2, P3, P1, P4> will result in Finish[i] = true for all

Allocation Request Available
A C A B ABC
© 00

Process

PO
P1

P3

0160
2 %)
P2 3 3
2 1
P4 %) 2

Snapshot at time T,

(CSS430 Deadlocks

Example (Cont.)

€ P, requests an additional instance of type C

Process Request
A B

€ State of system?

v Can reclaim resources held by process P,, but insufficient
resources to fulfill other processes; requests

v Deadlock exists, consisting of processes P,, P,, P;, and P,

(CSS430 Deadlocks

Detection-Algorithm Usage

€ When, and how often, to invoke depends on:
v' How often a deadlock is likely to occur?

v" How many processes will need to be rolled back?
one for each disjoint cycle

& If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not be
able to tell which of the many deadlocked processes
“caused” the deadlock.

(CSS430 Deadlocks

Recovery from Deadlock:
Process Termination

€ Abort all deadlocked processes

€ Abort one process at a time until the deadlock cycle
is eliminated

€ In which order should we choose to abort?
Priority of the process

How long process has computed, and how much
longer to completion

Resources the process has used

Resources process needs to complete

How many processes will need to be terminated
|s process interactive or batch?

v
v

V0.2 (CSS430 Deadlocks

Recovery from Deadlock:
Resource Preemption

€ Selecting a victim — minimize cost

€ Rollback — return to some safe state, restart process for
that state

€ Starvation — same process may always be picked as
victim, include number of rollback in cost factor

(CSS430 Deadlocks

Exercises (No turn-in)

Why aren’t deadlock detection and recovery so
attractive?

Solve Exercise 7.3, 7.6, 7.9, 7.10, 7.14, and 7.19

Can the Java code in the next slide cause a
deadlock? If so, write a resource allocation graph
with a deadlock.

V0.2 (CSS430 Deadlocks

public class Deadlock {

public Deadlock() {
Mutex mutex[] = new Mutex[4];

for (inti=0;i<4;i++)
mutex[i] = new Mutex();

A threadA = new A(mutex);
B threadB = new B(mutex);
C threadC = new C(mutex);

threadA.start();
threadB.start();
threadC.start();

public static void main(String arg[]) {
Deadlock d = new Deadlock();
by

class Mutex{ }

private class A extends Thread

{

private Mutex[] resource;
public A(Mutex[] m) {
resource = m;

by
public void run() {
System.out.printin("A started");
synchronized (resource[1]) {
System.out.printin("A got rsc 1");
synchronized (resource[0]) {
System.out.printin("A got rsc 0");

}

b
System.out.printin("A finished");

}
V0.2 (CSS430 Deadlocks

private class B extends Thread
{
private Mutex[] resource;
public B(Mutex[] m) {
resource = m;

b
public void run() {
System.out.printin("B started");
synchronized (resource[3]) {
System.out.printin("B got rsc 3");
synchronized (resource[0]) {
System.out.printin("B got rsc 0");
synchronized (resource[2]) {
System.out.printin("B got rsc 2");
by

b
b
System.out.printin("B finished");

¥
¥

private class C extends Thread
{
private Mutex[] resource;
public C(Mutex[] m){
resource = m;

b
public void run() {
System.out.printin("C started");
synchronized (resource[2]) {
System.out.printin("C got rsc 2");
synchronized (resource[1]) {
System.out.printin("C got rsc 1");
b
b
System.out.printin("C finished");

