
CEvent

An object of class CEvent represents an “event” — a synchronization object that allows one thread
to notify another that an event has occurred. Events are useful when a thread needs to know when
to perform its task. For example, a thread that copies data to a data archive would need to be
notified when new data is available. By using a CEvent object to notify the copy thread when new
data is available, the thread can perform its task as soon as possible.

CEvent objects have two types: manual and automatic. A manual CEvent object stays in the state
set by SetEvent or ResetEvent until the other function is called. An automatic CEvent object
automatically returns to a nonsignaled (unavailable) state after at least one thread is released.

To use a CEvent object, construct the CEvent object when it is needed. Specify the name of the
event you wish to wait on, and that your application should initially own it. You can then access the
event when the constructor returns. Call SetEvent to signal (make available) the event object and
then call Unlock when you are done accessing the controlled resource.

An alternative method for using CEvent objects is to add a variable of type CEvent as a data
member to the class you wish to control. During construction of the controlled object, call the
constructor of the CEvent data member specifying if the event is initially signaled, the type of
event object you want, the name of the event (if it will be used across process boundaries), and
desired security attributes.

To access a resource controlled by a CEvent object in this manner, first create a variable of either
type CSingleLock or type CMultiLock in your resource’s access member function. Then call the lock
object’s Lock member function (for example, CMultiLock::Lock). At this point, your thread will
either gain access to the resource, wait for the resource to be released and gain access, or wait for
the resource to be released and time out, failing to gain access to the resource. In any case, your
resource has been accessed in a thread-safe manner. To release the resource, call SetEvent to
signal the event object, and then use the lock object’s Unlock member function (for example,
CMultiLock::Unlock), or allow the lock object to fall out of scope.

For more information on using CEvent objects, see the article Multithreading: How to Use the
Synchronization Classes in Visual C++ Programmer's Guide.

#include <afxmt.h>

Class Members | Base Class | Hierarchy Chart

Sample MFC Sample MTGDI

Page 1 of 1CEvent

12/30/2001mk:@MSITStore:C:\Program%20Files\Microsoft%20Visual%20Studio\MSDN98\98VSa\10...

CMutex

An object of class CMutex represents a “mutex” — a synchronization object that allows one thread
mutually exclusive access to a resource. Mutexes are useful when only one thread at a time can be
allowed to modify data or some other controlled resource. For example, adding nodes to a linked
list is a process that should only be allowed by one thread at a time. By using a CMutex object to
control the linked list, only one thread at a time can gain access to the list.

To use a CMutex object, construct the CMutex object when it is needed. Specify the name of the
mutex you wish to wait on, and that your application should initially own it. You can then access
the mutex when the constructor returns. Call CSyncObject::Unlock when you are done accessing
the controlled resource.

An alternative method for using CMutex objects is to add a variable of type CMutex as a data
member to the class you wish to control. During construction of the controlled object, call the
constructor of the CMutex data member specifying if the mutex is initially owned, the name of the
mutex (if it will be used across process boundaries), and desired security attributes.

To access resources controlled by CMutex objects in this manner, first create a variable of either
type CSingleLock or type CMultiLock in your resource’s access member function. Then call the lock
object’s Lock member function (for example, CSingleLock::Lock). At this point, your thread will
either gain access to the resource, wait for the resource to be released and gain access, or wait for
the resource to be released and time out, failing to gain access to the resource. In any case, your
resource has been accessed in a thread-safe manner. To release the resource, use the lock object’s
Unlock member function (for example, CSingleLock::Unlock), or allow the lock object to fall out of
scope.

For more information on using CMutex objects, see the article Multithreading: How to Use the
Synchronization Classes in Visual C++ Programmer’s Guide.

#include <afxmt.h>

Class Members | Base Class | Hierarchy Chart

Sample MFC Sample MUTEXES

Page 1 of 1CMutex

12/30/2001mk:@MSITStore:C:\Program%20Files\Microsoft%20Visual%20Studio\MSDN98\98VSa\10...

CSemaphore

An object of class CSemaphore represents a “semaphore” — a synchronization object that allows
a limited number of threads in one or more processes to access a resource. A CSemaphore object
maintains a count of the number of threads currently accessing a specified resource.

Semaphores are useful in controlling access to a shared resource that can only support a limited
number of users. The current count of the CSemaphore object is the number of additional users
allowed. When the count reaches zero, all attempts to use the resource controlled by the
CSemaphore object will be inserted into a system queue and wait until they either time out or the
count rises above 0. The maximum number of users who can access the controlled resource at one
time is specified during construction of the CSemaphore object.

To use a CSemaphore object, construct the CSemaphore object when it is needed. Specify the
name of the semaphore you wish to wait on, and that your application should initially own it. You
can then access the semaphore when the constructor returns. Call CSyncObject::Unlock when you
are done accessing the controlled resource.

An alternative method for using CSemaphore objects is to add a variable of type CSemaphore as
a data member to the class you wish to control. During construction of the controlled object, call
the constructor of the CSemaphore data member specifying the initial access count, maximum
access count, name of the semaphore (if it will be used across process boundaries), and desired
security attributes.

To access resources contolled by CSemaphore objects in this manner, first create a variable of
either type CSingleLock or type CMultiLock in your resource’s access member function. Then call
the lock object’s Lock member function (for example, CSingleLock::Lock). At this point, your
thread will either gain access to the resource, wait for the resource to be released and gain access,
or wait for the resource to be released and time out, failing to gain access to the resource. In any
case, your resource has been accessed in a thread-safe manner. To release the resource, use the
lock object’s Unlock member function (for example, CSingleLock::Unlock), or allow the lock object
to fall out of scope.

Alternatively, you can create a CSemaphore object stand-alone, and access it explicitly before
attempting to access the controlled resource. This method, while clearer to someone reading your
source code, is more prone to error.

For more information on how to use CSemaphore objects, see the article Multithreading: How to
Use the Synchronization Classes in Visual C++ Programmer’s Guide.

#include <afxmt.h>

Class Members | Base Class | Hierarchy Chart

Sample MFC Sample MUTEXES

Page 1 of 1CSemaphore

12/30/2001mk:@MSITStore:C:\Program%20Files\Microsoft%20Visual%20Studio\MSDN98\98VSa\10...

CMultiLock

CMultiLock does not have a base class.

An object of class CMultiLock represents the access-control mechanism used in controlling access
to resources in a multithreaded program. To use the synchronization classes CSemaphore, CMutex,
and CEvent, you can create either a CMultiLock or CSingleLock object to wait on and release the
synchronization object. Use CMultiLock when there are multiple objects that you could use at a
particular time. Use CSingleLock when you only need to wait on one object at a time.

To use a CMultiLock object, first create an array of the synchronization objects that you wish to
wait on. Next, call the CMultiLock object’s constructor inside a member function in the controlled
resource’s class. Then call the Lock member function to determine if a resource is available
(signaled). If one is, continue with the remainder of the member function. If no resource is
available, either wait for a specified amount of time for a resource to be released, or return failure.
After use of a resource is complete, either call the Unlock function if the CMultiLock object is to be
used again, or allow the CMultiLock object to be destroyed.

CMultiLock objects are most useful when a thread has a large number of CEvent objects it can
respond to. Create an array containing all the CEvent pointers, and call Lock. This will cause the
thread to wait until one of the events is signaled.

For more information on how to use CMultiLock objects, see the article Multithreading: How to
Use the Synchronization Classes in Visual C++ Programmer’s Guide.

#include <afxmt.h>

Class Members | Hierarchy Chart

Page 1 of 1CMultiLock

12/30/2001mk:@MSITStore:C:\Program%20Files\Microsoft%20Visual%20Studio\MSDN98\98VSa\10...

CSingleLock

CSingleLock does not have a base class.

An object of class CSingleLock represents the access-control mechanism used in controlling
access to a resource in a multithreaded program. In order to use the synchronization classes
CSemaphore, CMutex, CCriticalSection, and CEvent, you must create either a CSingleLock or
CMultiLock object to wait on and release the synchronization object. Use CSingleLock when you
only need to wait on one object at a time. Use CMultiLock when there are multiple objects that
you could use at a particular time.

To use a CSingleLock object, call its constructor inside a member function in the controlled
resource’s class. Then call the IsLocked member function to determine if the resource is available.
If it is, continue with the remainder of the member function. If the resource is unavailable, either
wait for a specified amount of time for the resource to be released, or return failure. After use of
the resource is complete, either call the Unlock function if the CSingleLock object is to be used
again, or allow the CSingleLock object to be destroyed.

CSingleLock objects require the presence of an object derived from CSyncObject. This is usually a
data member of the controlled resource’s class. For more information on how to use CSingleLock
objects, see the article Multithreading: How to Use the Synchronization Classes in Visual C++
Programmer’s Guide.

#include <afxmt.h>

Class Members | Hierarchy Chart

See Also CMultiLock

Page 1 of 1CSingleLock

12/30/2001mk:@MSITStore:C:\Program%20Files\Microsoft%20Visual%20Studio\MSDN98\98VSa\10...

