
Chris D’Annunzio 11/17/2003 Page 1 of 4

Keyboard Input Using
DirectInput

Introduction
This is a quick set of instructions for using DirectInput to get basic keyboard input
from the user. DirectInput is an alternative to the MFC/Win32 calls for getting
keyboard input.

The DirectInput method described here is based on a device-polling model as
opposed to the message model that the MFC/Win32 method uses. The primary
advantage of this is that you can directly control the keyboard sampling
frequency. Ultimately, this will give users a better feeling of control when
interacting with your application.

Caveats
The method described here initializes the keyboard device in exclusive mode.
This means that no other applications can see what the keyboard is doing while
your application in running. Additionally, the MFC portion of YOUR application
won't be able to see the keyboard either. This means that tabbing through
controls or setting slider values with the arrow keys will not work.

I am by no means a DirectInput expert. There is probably a better way to handle
this stuff. If you have any corrections, additions, or suggestions for this tutorial,
please let me know.

Step 1 - Link In the DirectInput libraries
First, you need to link in the DirectInput libraries when compiling your program.

Required Libraries: dinput8.lib dxguid.lib

1) In Visual Studio.net, right-click on your Dialog project in the solution explorer
and select properties. This will open the project properties dialog box.

2) Select "All Configurations" in the configurations drop-down menu. This will
ensure the changes you make will affect both Debug and Release
configurations.

3) Select Configuration Properties -> Linker -> Input in the property browser.

Chris D’Annunzio 11/17/2003 Page 2 of 4

4) Enter "dinput8.lib dxguid.lib" in the Additional Dependencies field.
5) Click Okay to save your changes and close the project properties dialog.

Step 2 - Add DirectInput declarations to
your Dialog header file
Include the DirectInput header file.

 #include <dinput.h>

Add the following lines of code to your Dialog header file in the private section of
your class.

 // DirectInput Variables
 LPDIRECTINPUT8 fDI; // Root DirectInput Interface
 LPDIRECTINPUTDEVICE8 fDIKeyboard; // The keyboard device

Step 3 - Add initialization code to your
OnInitDialog() method
Add the following lines of code to the OnInitDialog() method in your Dialog class
implementation file.

 // --- Start of DirectInput initialization ---

 // Create the abstract DirectInput connection
 DirectInput8Create(
 GetModuleHandle(NULL),
 DIRECTINPUT_VERSION,
 IID_IDirectInput8,
 (void**)&fDI,
 NULL
);

 if (fDI == NULL)
 {
 MessageBox("DirectInput Connection Creation Failed!");
 return FALSE;
 }

 // Create the connection to the keyboard device
 fDI->CreateDevice(GUID_SysKeyboard, &fDIKeyboard, NULL);

 if (fDIKeyboard)
 {
 fDIKeyboard->SetDataFormat(&c_dfDIKeyboard);
 fDIKeyboard->SetCooperativeLevel(
 this->m_hWnd,
 DISCL_FOREGROUND | DISCL_EXCLUSIVE
);
 fDIKeyboard->Acquire();

Chris D’Annunzio 11/17/2003 Page 3 of 4

 }
 else
 {
 MessageBox("DirectInput Keyboard initialization Failed!");
 return FALSE;
 }

 // --- End of DirectInput initialization ---

Step 4 - Get the keyboard state and process
Now that you have DirectInput initialized, you want to start processing keyboard
input. Since you are polling the keyboard state at regular intervals, I think it
makes sense to put this code in the OnTimer() method. This way you are
handling keyboard input just before rendering each frame.

1.) Add the following code to the beginning of your OnTimer() method to get the
keyboard state.

 // The following macro allows you to test if
 // a key is currently pressed
 #define KEYDOWN(name, key) (name[key] & 0x80)

 // Here we set up an array of 256 chars. This will hold the
 // entire keyboard state after it has been retrieved.
 char fDIKeyboardState[256];

 HRESULT hr;

 // get the keyboard state
 hr = fDIKeyboard->GetDeviceState(
 sizeof(fDIKeyboardState),
 (LPVOID)&fDIKeyboardState
);

 if (FAILED(hr))
 {
 // It's possible that we lost access to the keyboard
 // Here we acquire access to the keyboard again
 fDIKeyboard->Acquire();
 return;
 }

2.) Now you need to add code to process the keyboard state as appropriate for
your application. You can test to see if specific keys are pressed using the
KEYDOWN macro defined in the code above. The macro takes a keyboard state
and a DirectInput keyboard constant, and returns true if the key is pressed and
false otherwise. A list of the keyboard constants can be found in the DirectX
documentation:

DirectInput
-> DirectInput C/C++ Reference

Chris D’Annunzio 11/17/2003 Page 4 of 4

-> Device Constants
-> Keyboard Device

As an example, here is the keyboard handling code from the simple pong game I
wrote. This code is in my OnTimer() method after the code listed above, and
before I update my world and redraw the Direct3D windows.

 static D3DXVECTOR3 paddleSpeed(0.0f, 7.0f, 0.0f);
 static D3DXVECTOR3 stop(0.0f, 0.0f, 0.0f);

 if (KEYDOWN(fDIKeyboardState, DIK_E))
 {
 // Red Player Up Pressed
 fWorld.fRedPaddle->SetVelocity(paddleSpeed);
 }
 else if (KEYDOWN(fDIKeyboardState, DIK_D))
 {
 // Red Player Down Pressed
 fWorld.fRedPaddle->SetVelocity(-paddleSpeed);
 }
 else
 {
 // Red Player Nothing Pressed
 fWorld.fRedPaddle->SetVelocity(stop);
 }

 if (KEYDOWN(fDIKeyboardState, DIK_I))
 {
 // Blue Player Up Pressed
 fWorld.fBluePaddle->SetVelocity(paddleSpeed);
 }
 else if (KEYDOWN(fDIKeyboardState, DIK_K))
 {
 // Blue Player Down Pressed
 fWorld.fBluePaddle->SetVelocity(-paddleSpeed);
 }
 else
 {
 // Blue Player Nothing Pressed
 fWorld.fBluePaddle->SetVelocity(stop);
 }

References
Microsoft DirectX Documentation
Advanced 3-D Game Programming Using DirectX 8.0 by Peter Walsh

