Creatinga GUIl ussng WTL
UW Bothell, CSS
ChrisTraina
August 2004

Pre-requisites:
1) Visual Studio .NET 7.1

2) WTL 7.1 -- you can download it here:
http://www.microsoft.com/downloads/detail s.aspx ?Familyl d=1BE1EB52-A A 96-4685-99A 5-
4256737781C5& displaylang=en)
Y ou will need to add the path to the WTL 7.1 include directory to your project’s“ Additional include
directories’ property (both for C/C++ and Resources, once the latter exists).

WtlFrame:

1) Thisproject demonstrates how to create the basic framework for aWTL window. This createsthe main
window framework that additional resources/controls are added to.

2) stdafx.h: thisfile containsal the WTL (WTL issimply an extension of ATL, so all the files names start
with atl) header files aswell asthe CAppModule variable required for all WTL applications.

3) WilFrame.h: thisiswhere the CWtlFrame classis declared

a. CWilFrameinherits from CFrameWindowlmpl, aWTL base class.

b. IDR_MAINFRAME isaresource ID that would normally go in resource.h. Because we don't
have any resources that Visual Studio recognizes, we will not have the resource.h header until
later (see WHlWindow below).

C. Thesection between BEGIN_MSG_MAP(CWtlIFrame) and END_MSG_MAP() maps all the
Windows message/control handlers for this class. For example, OnCreate is called when the class
isinstantiated and can be used for initialization purposes.

4) WitlFrame.cpp: thisiswhere the CWtlFrame class methods are implemented.

a. OnCreate creates a simple status bar and calls the GetM essageloop function to register itself to
receive certain Windows messages.

b. OnFileExit posts a message telling Windows to close the window.

5) main.cpp: thisiswhere the CWtlFrame classis instantiated and the function that creates the window
(Create) iscalled.

6) Once you have properly installed WTL 7.1 and modifed the project to include the WTL include directory,
you should be able to compile and run this project. Whenitisrun, it will display aplain window frame.
The next step is to add awindow to the frame.

WtlWindow:

1) WitlFrame.h: two modifications have been made to thisfile:
a. A CWindowView member variable has been added to the class for creation of the* child”
window.
b. Anadditional line has been added to PreTransateMessage so that, if the frame class cannot
process a message, the message is passed to the child window.

2) WilFrame.cpp: acrucid lineisadded to thisfile to call the function (Create) that creates the child
window.

3) WitlWindow.h: thisiswhere the child window classis declared
a. Notethat IDD_WTL_VIEW isaresource ID that is stored in resource.h. Because we have added
resources (as you will soon see), Visual Studio has automatically created the resource.h file for us
and populated it with the resource IDs. We had to manually re-locate the IDR_ MAINFRAME
#defineto thisfile.
b. A message handler (OnShow) has been added to handle any intialization of the child window.

4) WitlWindow.cpp: thisiswhere the child window class methods are implemented

5) If you change from the “ Solution Explorer” tab to the “ Resource View” tab (or double-click on
Wil Tutorial.rc), you will see that adialog resource called IDD_WTL_VIEW has been added. This
resource is linked to the CWtlWindow class and is created/displayed when the classis created by the
CWilFrame class. We will use the Resource View more when we add additional controls.

6) You should now be able to compile and run this project. Now, instead of displaying an empty
framework, it displays the CWtlWindow (IDD_WTL_VIEW) form within the the CWtlFrame.

7) Noteson Resources:

a Adding thefirst resource to the previous WtlFrame project is fairly smple. Simply go to the
Resource View tab, right-click the root entity of the tree view, select Add, and select “ Add
Resource...”. Expand “Didog” and select IDD_FORMVIEW. The default ID
(IDD_FORMVIEW) was changed to IDD_WTL_VIEW in the tutorial.

b. How isresource ID linked to class? In the WtlWindow.h file, you will seethat the class setsits
internal IDD valueto IDD_WTL_VIEW. Thislinksthe FORMVIEW resource that was just
created to the CWtlWindow class. Thus, when you instantiate a CWtlWindow object (as
WtlFrame does when it is created), a FORMVIEW abject is created with it.

c. Resource IDs arethe way you get a handle to any control. If you want a handle to a button with
the D IDC_BN_MYBUTTON, you can do this:

CButton bnButton = GetDIgltem(IDC_BN_MYBUTTON);
WtlWindowWithContrals:

1) WitlWindow.h:

a You will seethat several new message handlers have been added, using a slightly different macro
(COMMAND_HANDLER). These are handlersfor controls that have been added to the
window. For example, OnBnClickedModify has been added as the command handler for when
the IDD_BN_MODIFY buttonisclicked. The BN_CLICKED parameter is a notification code
that specifies what type of control event the handler will deal with. Other possible parameters
(e.g. BN_PUSHED, BN_DISABLED, BN_SETFOCUS, etc.) can be found in winuser.h. Other
options are available for different control types. For example, LBN_SELCHANGE isthe
notification code when the selected value in alist box changes and CBN_DBLCLK isthe code
for when a combo box is double-clicked.

b. A new map has also been added:

BEGIN_DDX_MAP(CWtWindow)
DDX_TEXT(IDC_STATIC_MSG, m_StaticMsg)
END_DDX_MAP()

The DDX stands for Do Data eX change and this code maps the contents of m_StaticM sg to the
text for the IDC_STATIC_MSG control. This makesit possible to load the controls current text
valueinto m_StaticMsg, using DoDataExchange(true, IDC_STATIC_MSG), or to modify
m_StaticMsg and update the controls text value with the new m_StaticM sg value, using

DoDataExchange(false, IDC_STATIC_MSG). NOTE: if you want to update all the controls for
which data exchanges are mapped, simply omit the control 1D, e.g. DoDataExchange(false).

Y ou can now compile and run the project. Y ou can see how the combination of command
handlers and data exchange mappings allow you to, among many other things, update a button’s
text, count the number of button clicks, update a static text control, read data out of an edit box,
and start and monitor atimer.

2) Creating your own control:

a

b.

C.

Go to the Resource View, select the IDD_WTL_VIEW control, and drag a new button from the
Toolbox onto the form.
With the new button selected, change the ID (in the Properties window) to IDD_BN_CLOSE and
the Caption to Close.
In the resource.h file, you will see that there is an automatically created #define for
IDD_BN_CLOSE.
In WtlWindow.h, add a COMMAND_HANDLER for the BN_CLICKED event for your new
Close button.
In the implementation of your command handler, add the following code:

GetParent().PostM essage(WM_CLOSE);
Compile and run your updated program. Now, the Close button will close the window.

