CSS450: Assignment 4 Question Sheet [This assignment carries twice the weight]

Instructions:

e In questions where you are asked to explain, please be concise.
e Show your work when necessary, be neat, precise, and brief!
e To help us grade your assignments and return this to you in a timely fashion please:
0 Put your name and answers in the answer sheet only (separate link provided).
Anything you write outside of the answer sheet will not be graded.
0 Provide your answers in the order of the problems.
0 Please use only one side of 8.5x11 paper.

0 Please make sure you bring a hardcopy print out of the answer sheet (!!only!!) to

submit at the beginning of class. Please do not print out the problems.

Your assignment may not be graded if any of the above is violated, you have been warned.

1.

In Week3 class example 3.9
(http://courses.washington.edu/css450/2016.Fall/WeeklyExamples/Week3/3.9.Ti

mer+SimpleSimulation/public _html/index.html), the XForm GUI above the

canvas reports the current values in the Transform of the rectangle shape that we
drag out. However, notice that when the shape falls, the Translation X/Y slider
bars do not reflect the position of the shape. Remember that you need to click on
the “T” radio button to observe the translation state of the rectangle shape.

In the context of MVC architecture, this problem can be described as
the (a) which of the Model/View/Controller component has changed state and

yet the _(b) which of the Model/View/Controller component is not aware of

the changes resulting in the state of the two components being out of sync. In

order to fix this problem, we can insert this code: _(c) the code you would insert

into this function: (d) name the function in this file: (e) name the file .

c) $scope.mForceRedraw = true;
d) mainTimerHandler()

e) MainController.js

2. Recall that we saw the rendering of mesh objects during Thursday’s class. The
following ClassExample defines the code that is capable of creating a Mesh
object, and drawing it. The createCustomMesh() function creates the mMesh
object that can be drawn by WebGL, and the draw() function draws it. This code
will not run because we do not have the library support for OBJ, and we do not
know what is the meshinString parameter passed to createCustomMesh().
However, we can see the integration of this code into the code base that we are
familiar with, in particular, we see the code working with classes that we are

familiar with: gEngine, SimpleShader, Transform, and Camera.

ClassExample.prototype.createCustomMesh = function (meshInString) {

this.mMesh = new OBJ.Mesh(meshInString); // 1. Creates a Mesh Object
OBJ.initMeshBuffers(gEngine.Core.getGL(),
this.mMesh); // 2. Initialize WebGL Buffers
this.mConstColorShader = new SimpleShader(//
"src/GLSLShaders/SimpleVS.glsl", // 3. Shader for the Mesh
"src/GLSLShaders/SimpleFS.glsl"); //
this.mXf = new Transform(); // 4. Transform Object for the
Mesh
this.mXf.setXPos(200); // 5. Sets the X-size of the
object
this.mXf.setYPos(200); // 6. Sets the y-size of the
object
this.mXf.setSize(30, 30); // 7. Sets the size of the mesh

3

ClassExample.prototype.draw = function (camera) {
gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1]); // 8. Clear canvas

camera.setupViewProjection(); // 9. Camera Magic
if (this.mMesh !== null) {
var gl = gEngine.Core.getGL(); //10. Gets a reference to WebGL

this.mConstColorShader.activateShader(//11. Activates the shader
this.mMesh.vertexBuffer,
[1) o, 0) 1])
camera.getVPMatrix());
this.mConstColorShader.loadObjectTransform(this.mXf.getXform());
//12. sets the mesh transform

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, //13. Next two lines draws
this.mMesh.indexBuffer);

gl.drawElements(gl. TRIANGLES,
this.mMesh.indexBuffer.numItems, gl.UNSIGNED_SHORT, ©);

}
I

Staring at the above code and comparing to the Renderable and
SquareRenderable classes from Example 4.3

(http://courses.washington.edu/css450/2016.Fall/WeeklyExamples/Week4/4.3.A
pproximateCollision/public_html/index.html), you begin to realize that although

you don’t know all the details, you do actually have an amazingly in-depth
knowledge. For example:

a. You know there must be a WebGL buffer that contains all the vertices for
the mesh. What is the full name of the variable that refers to this WebGL
buffer?

Please list the full-scope name of the variable, beginning with this, your
answer will look like: this.something.something.....
this.mMesh.vertexBuffer

b. What would be the color of the drawn mesh object?
In Red color.

Staring at the code a little more, you realize that you are literally seeing a
MeshRenderable class. The MeshRenderable can simply subclass from Renderable
with createCustomMesh() function being the constructor and the draw() function
overriding the definition in the Renderable class. Of course, you recognize that
some modifications must be made. For example, line-3 of the given code, the line
that says: // 3. shader for the Mesh, you know that this line is unnecessary in a
subclass of Renderable class because the shader is already defined in the super
class. You also recognize that lines 5, 6, and 7 are setting the transform for the
object and do not belong in a constructor. Now, examine the code closely and
identify all other lines of code that do not belong in the corresponding functions:

c. Please list the rest of the code in createCustomMesh() that do not
belong in the constructor of a MeshRenderable class. Your answer will
be a comma-separated list of integers.

Lines: 4 (no need to create a new Transform)

Each correct answer is 1pt, each wrong answer is -1pt.

d. Refer to the given draw() function. Please list all of the lines that do not
belong in a MeshRenderable::draw() function. Your answer will be a
comma-separated list of integers.
Lines: 8 and 9 (no need to clear the canvas, or initialize the camera)

Each correct answer is 1pt, each wrong answer is -1pt.

See? With proper conceptual framework, you can perform abstraction based on
simple pattern matching! ©

