
3D Ray Tracing
and

Image Generation

Thomas Baron | Joshua Bell

John Davis | Nathaniel Williams

Objectives:

 Render complex 3D anaglyph scenes,
viewable using 3D glasses

 Create support necessary for such complex
scenes
 Mesh Support
 Acceleration structures

Anaglyph Images

Rendering Anaglyph Images

Why do it?

What is it?

How is it done?

Our progress

Measuring Success

Resources

Why Anaglyph

Turn a 2D screen into a 3D display

Can be implemented with ray tracing effectively

Some methods less accurate

Interesting technical challenge

What is Anaglyph

What is Anaglyph

Definition

A redish left image and a blueish (cyan) right
image superimposed onto each other and
when viewed with glasses of corresponding
colors appears 3D

Why red and cyan

How to Anaglyph

Lots of methods available

Generalized Process

Fully ray trace a center and right image

Apply post processing to the images

Ray Tracing Both Images

Info: eye dominance

Eye Positions

offsets

View frames

Vanishing point

Background objects vs foreground objects

Post Ray Tracing Processing

From Color to red or cyan

Use gray scale as a step between full color and
red or cyan

From practice we have found emphasizing the red
and emphasizing the blue in the
corresponding images works better

Part art. Various methods. Including the retention
of green.

Add corresponding pixel colors together

Our Progress: 2 images

Original Center Original Right

Our Progress: emphasized images

Cyan Emphasized Red Emphasized

Our Progress: Result

Measuring Success

The resulting image can be seen in 3D while
wearing anaglyph glasses

No measuring tool. May be subjective from
viewer to viewer. Eyes may have to adjust.

MESH SUPPORT

What must we know?

 What?

 Filename

 Where?

 Position transformation

 How?

 Rotation transformation

 Scale transformation

 Material

Command File

 Includes all necessary attributes
 Filename
 Material
 Position, Rotation, and Scale transformations

<mesh>

<filename> SphereHighPoly </filename>

<material> 1 </material>

<position> 10 0 20 </position>

<rotation> 90 0 90 </rotation>

<scale> 1 1 1 </scale>

</mesh>

Parsing using Graphics API

 Graphics API simplifies
parsing mesh data.

 Allows us to read binary
mesh files

 The API allows us to
read the polygon
information from the
graphics pipeline.

VertexBuffer and IndexBuffer

 Vertex buffer is a byte stream and contains
information specified in mesh file.

 May include: vertex position, normal vector,
texture coordinates, etc.

 Index buffer is an integer stream, listing
triangles by their vertices.

 Each index corresponds to a specific vertex.

 Vertices may be reused.

Calculating Vertex Normal

 Necessary to compute if
missing from mesh
 Phong illumination
 Reflection

1. Calculate the normal for every
triangle.

2. For every vertex, add the
normal of every triangle that
shares it.

3. Normalize the normal vector
 Correct direction, wrong size.
 Dividing by the number of

additions may not result in a
vector of size 1.

Ray Tracing Meshes

 Must store mesh as “Geometry” type

 Scene compatibility

 Intersections

 Add a Geometry_Triangle to the scene
database for every polygon in the mesh.

 Must perform world transformation!

 Translation, rotation, scale

ACCELERATION STRUCTURES

Prerequisites

 Meshes are preloaded and respective
bounding boxes calculated.

 Mesh data is parsed and triangle geometries
generated.

Current Implementation

 Fastest possible time: O(S x M x N x G)

 G = Number of geometries

 Only G can be optimized

 Geometries are stored in a list (1D array)

 Every ray intersects every geometry in the
scene.

 Many geometries = very slow

Acceleration Structures

 Key idea: reduce number of intersection
routines per ray.

 Geometries are organized in a 3D data-
structure.

 i.e., 3D array, Kd/BSP-Tree, Oct-Tree

 Best performance increase on highly-complex
scenes.

Intersection Routine

1. Shoot a ray from the camera

2. Intersect ray with every cell in the data
structure

 May require entire tree traversal, depending on
implementation

3. For each cell that it intersects:

 Intersect ray with every geometry within the cell

UNIFORM SUBDIVISION MAP

3-dimensional array of primitives

Pros

 Fast

 Simple

 Traversal via line equation

 Ray.Origin + Ray.Direction * distance

Cons

 Potentially wastes a large amount of memory
for empty cells

 Depends on geometry distribution within world

 Difficult to pick an optimal cell size

 Large cells result in too many geometries in a
single cell.

 Small cells result in too many cells.

Determine the “world” size

 Fit tightly around geometries in world

 Minimize void space

 Concatenate all geometry bounding boxes

BoundingBox world;

foreach (Geometry g in SceneDatabase)‏

world = BoundingBox.CreateMerged(world,

g.BoundBox);

Determine Optimal Map Size

 Option A: Pick a static number O(1)

 i.e., 10x10x10, 20x20x20, 12x23x59, etc.

 Command file vs. hardcoded constant

 Option B: Function of known metrics O(1)

 i.e., SceneDatabase.Geometries.Count /
world.X… Y… Z…

 Option C: Precompute a spatial distribution
histogram O(N)

Initialize map

 Create a grid of size [x, y, z]

 Simply add all geometries that intersect each cell

Cell[,,] grid = new Cell[x-size,

y-size,

z-size];

foreach (Geometry g in SceneDatabase)‏

foreach (Cell c in grid)‏

if (c.Intersects(g))‏

c.Add(g);

Searching

 Follow line equation

 Perform line
rasterization

 Several approaches

 Bresenham's

 Still researching…

NON-UNIFORM SUBDIVISION MAP

Pros

 Very Fast (Goal: logn)

 Simple Tree Traversal (Usually)

Cons

 Can be complex to implement

 Takes time to initialize structure

 Difficult to choose initial partitions

Non-Uniform Examples

 BSP Trees (Binary Space Partition Trees)
 Divide space by arbitrary planes

 Bounding Volume Hierarchies
 Bound geometry within volume shapes

 Bounding Interval Hierarchies
 Super fast, super complex
 Best of volumes and subdivision

 KD Trees
 Special type of BSP Tree
 Simple, effective

KD Trees

 Divide Space into Cells
 Axis-aligned Splitting Planes

 Divide cell along one geometry
 All other geometries fall to left or right

 Organize geometry into tree structure
 Goal: Reduce geometry

 n to logn (ideally—binary tree)

KD Tree Basic Idea

KD Tree Basic Idea

KD Tree Basic Idea

KD-Tree Spacial Subdivision

 Image Courtesy of Wikipedia

Subdivision Problem

Two Solutions

KD Tree Traversal

 Traverse Tree Structure
 Tree Position affects Intersection Priority
 Problem: Rays Cross Many Cells
 Still Being Researched

Resources I

Adventures in Ray Tracing:
http://www.arachnoid.com/raytracing/anaglyphic_3d.html

Wikipedia:

http://en.wikipedia.org/wiki/Anaglyph_image

How to Make 3D Photos

http://www.wikihow.com/Make-3D-Photos

http://en.wikipedia.org/wiki/Anaglyph_image
http://en.wikipedia.org/wiki/Anaglyph_image

Resources II

 Spatial Subdivision for Ray Tracing
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps

 Bresenham’s Line Algorithm
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Resources III

 Fast Ray Tracing using KD Trees
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf

 KD Tree
http://en.wikipedia.org/wiki/Kd-tree

http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Kd-tree

