
3D Ray Tracing
and

Image Generation

Thomas Baron | Joshua Bell

John Davis | Nathaniel Williams

Objectives:

 Render complex 3D anaglyph scenes,
viewable using 3D glasses

 Create support necessary for such complex
scenes
 Mesh Support
 Acceleration structures

Anaglyph Images

Rendering Anaglyph Images

Why do it?

What is it?

How is it done?

Our progress

Measuring Success

Resources

Why Anaglyph

Turn a 2D screen into a 3D display

Can be implemented with ray tracing effectively

Some methods less accurate

Interesting technical challenge

What is Anaglyph

What is Anaglyph

Definition

A redish left image and a blueish (cyan) right
image superimposed onto each other and
when viewed with glasses of corresponding
colors appears 3D

Why red and cyan

How to Anaglyph

Lots of methods available

Generalized Process

Fully ray trace a center and right image

Apply post processing to the images

Ray Tracing Both Images

Info: eye dominance

Eye Positions

offsets

View frames

Vanishing point

Background objects vs foreground objects

Post Ray Tracing Processing

From Color to red or cyan

Use gray scale as a step between full color and
red or cyan

From practice we have found emphasizing the red
and emphasizing the blue in the
corresponding images works better

Part art. Various methods. Including the retention
of green.

Add corresponding pixel colors together

Our Progress: 2 images

Original Center Original Right

Our Progress: emphasized images

Cyan Emphasized Red Emphasized

Our Progress: Result

Measuring Success

The resulting image can be seen in 3D while
wearing anaglyph glasses

No measuring tool. May be subjective from
viewer to viewer. Eyes may have to adjust.

MESH SUPPORT

What must we know?

 What?

 Filename

 Where?

 Position transformation

 How?

 Rotation transformation

 Scale transformation

 Material

Command File

 Includes all necessary attributes
 Filename
 Material
 Position, Rotation, and Scale transformations

<mesh>

<filename> SphereHighPoly </filename>

<material> 1 </material>

<position> 10 0 20 </position>

<rotation> 90 0 90 </rotation>

<scale> 1 1 1 </scale>

</mesh>

Parsing using Graphics API

 Graphics API simplifies
parsing mesh data.

 Allows us to read binary
mesh files

 The API allows us to
read the polygon
information from the
graphics pipeline.

VertexBuffer and IndexBuffer

 Vertex buffer is a byte stream and contains
information specified in mesh file.

 May include: vertex position, normal vector,
texture coordinates, etc.

 Index buffer is an integer stream, listing
triangles by their vertices.

 Each index corresponds to a specific vertex.

 Vertices may be reused.

Calculating Vertex Normal

 Necessary to compute if
missing from mesh
 Phong illumination
 Reflection

1. Calculate the normal for every
triangle.

2. For every vertex, add the
normal of every triangle that
shares it.

3. Normalize the normal vector
 Correct direction, wrong size.
 Dividing by the number of

additions may not result in a
vector of size 1.

Ray Tracing Meshes

 Must store mesh as “Geometry” type

 Scene compatibility

 Intersections

 Add a Geometry_Triangle to the scene
database for every polygon in the mesh.

 Must perform world transformation!

 Translation, rotation, scale

ACCELERATION STRUCTURES

Prerequisites

 Meshes are preloaded and respective
bounding boxes calculated.

 Mesh data is parsed and triangle geometries
generated.

Current Implementation

 Fastest possible time: O(S x M x N x G)

 G = Number of geometries

 Only G can be optimized

 Geometries are stored in a list (1D array)

 Every ray intersects every geometry in the
scene.

 Many geometries = very slow

Acceleration Structures

 Key idea: reduce number of intersection
routines per ray.

 Geometries are organized in a 3D data-
structure.

 i.e., 3D array, Kd/BSP-Tree, Oct-Tree

 Best performance increase on highly-complex
scenes.

Intersection Routine

1. Shoot a ray from the camera

2. Intersect ray with every cell in the data
structure

 May require entire tree traversal, depending on
implementation

3. For each cell that it intersects:

 Intersect ray with every geometry within the cell

UNIFORM SUBDIVISION MAP

3-dimensional array of primitives

Pros

 Fast

 Simple

 Traversal via line equation

 Ray.Origin + Ray.Direction * distance

Cons

 Potentially wastes a large amount of memory
for empty cells

 Depends on geometry distribution within world

 Difficult to pick an optimal cell size

 Large cells result in too many geometries in a
single cell.

 Small cells result in too many cells.

Determine the “world” size

 Fit tightly around geometries in world

 Minimize void space

 Concatenate all geometry bounding boxes

BoundingBox world;

foreach (Geometry g in SceneDatabase)

world = BoundingBox.CreateMerged(world,

g.BoundBox);

Determine Optimal Map Size

 Option A: Pick a static number O(1)

 i.e., 10x10x10, 20x20x20, 12x23x59, etc.

 Command file vs. hardcoded constant

 Option B: Function of known metrics O(1)

 i.e., SceneDatabase.Geometries.Count /
world.X… Y… Z…

 Option C: Precompute a spatial distribution
histogram O(N)

Initialize map

 Create a grid of size [x, y, z]

 Simply add all geometries that intersect each cell

Cell[,,] grid = new Cell[x-size,

y-size,

z-size];

foreach (Geometry g in SceneDatabase)

foreach (Cell c in grid)

if (c.Intersects(g))

c.Add(g);

Searching

 Follow line equation

 Perform line
rasterization

 Several approaches

 Bresenham's

 Still researching…

NON-UNIFORM SUBDIVISION MAP

Pros

 Very Fast (Goal: logn)

 Simple Tree Traversal (Usually)

Cons

 Can be complex to implement

 Takes time to initialize structure

 Difficult to choose initial partitions

Non-Uniform Examples

 BSP Trees (Binary Space Partition Trees)
 Divide space by arbitrary planes

 Bounding Volume Hierarchies
 Bound geometry within volume shapes

 Bounding Interval Hierarchies
 Super fast, super complex
 Best of volumes and subdivision

 KD Trees
 Special type of BSP Tree
 Simple, effective

KD Trees

 Divide Space into Cells
 Axis-aligned Splitting Planes

 Divide cell along one geometry
 All other geometries fall to left or right

 Organize geometry into tree structure
 Goal: Reduce geometry

 n to logn (ideally—binary tree)

KD Tree Basic Idea

KD Tree Basic Idea

KD Tree Basic Idea

KD-Tree Spacial Subdivision

 Image Courtesy of Wikipedia

Subdivision Problem

Two Solutions

KD Tree Traversal

 Traverse Tree Structure
 Tree Position affects Intersection Priority
 Problem: Rays Cross Many Cells
 Still Being Researched

Resources I

Adventures in Ray Tracing:
http://www.arachnoid.com/raytracing/anaglyphic_3d.html

Wikipedia:

http://en.wikipedia.org/wiki/Anaglyph_image

How to Make 3D Photos

http://www.wikihow.com/Make-3D-Photos

http://en.wikipedia.org/wiki/Anaglyph_image
http://en.wikipedia.org/wiki/Anaglyph_image

Resources II

 Spatial Subdivision for Ray Tracing
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps

 Bresenham’s Line Algorithm
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://www.cs.cmu.edu/afs/cs/project/anim-ph/463.95/pub/www/ps/spatial-subdivision.ps
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Resources III

 Fast Ray Tracing using KD Trees
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf

 KD Tree
http://en.wikipedia.org/wiki/Kd-tree

http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://www.cs.utexas.edu/ftp/pub/techreports/tr88-07.pdf
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Kd-tree

