
Fog and Cloud Effects

Karl Smeltzer

Alice Cao

John Comstock

Goal

 Explore methods of rendering scenes
containing fog or cloud-like effects through
a variety of different techniques

 Atmospheric effects make rendered scenes

 become more natural and realistic

 create a better sense of depth

 impact the viewer to wonder whether they are
indeed seeing a photo or a rendered picture

Natural Variation

 Real environmental fog and clouds vary
greatly in size, shape, definition, density, etc.

 Not feasible to judge one rendering method
as the best or most realistic

Enclosed Fog vs. Overall Fog
Fog Enclosed in a Volume Fog Around the Entire Scene

Fog Rendering Techniques

 Traditional texture mapping

 Two-dimensional noise texturing

 Volumetric ray casting

 Pixel fog

 Single scattering model

Volumetric Ray Casting
 For each pixel

 Shoot a ray through a three dimensional volume

 Take samples within the volume at various points

 Compute the color for each sample point

 Composite the various samples into a final color

Volumes using Quadric Surfaces
 The basic general form of a

three-dimensional quadric
surface function:

AX2 + BY2 + CZ2 + DXY + EXZ +
FYZ + GX + HY + IZ + J = 0

 This implies that any quadric
surface anywhere in 3D space
can be defined using ten
numbers, A through J.

Quadric Surfaces (cont.)
 This formula can then be reduced through substitution to a more familiar form:

Act
2 + Bct + Cc = 0 where

Ac = AXd
2 + BYd

2 + CZd
2 + DXdYd + EXdZd + FYdZd

Bc = 2AXoXd + 2BYoYd + 2CZoZd + DXoYd + DYoXd + EXoZd + EZoXd + FYoZd + FZoYd + GXd + HYd + IZd

Cc = AXo
2 + BYo

2 + CZo
2 + DXoYo + EXoZo + FYoZo + GXo + HYo + IZo + J

R(t) = Rdt + Ro

 This allows us to generalize two calculations:
 Visibility

We can use Bc
2 - 4AcCc to determine whether an intersection exists and then solve

the complete quadratic equation for t1 and t2, to substitute back into our R(t) above.

 Normal at any point
Given the normal defined as the following:

Nx = 2AX + DY + EZ + G
Ny = 2BY + DX + FZ + H
Nz = 2CZ + EX + FY + I

With the value for t, from the visibility calculation above, we can define
Px = Xdt + Xo

Py = Ydt + Yo

Pz = Zdt + Zo

We can now substitute the P values in for X, Y, and Z in the normal equation for the normal at any point.

Pixel Fog

 Apply a fog factor to each pixel to determine how much
of a pixel is obscured by fog. The fog factor is calculated
by linearly interpolating the accumulated color and the
fog color along a ray at various sample points.

 This can be applied to the complete rendered scene and
not just a single piece of geometry

 DirectX uses the following formula to compute the fog
coefficient:

f = e-(ρ*d*n)

with p = density, d = camera distance, and n = Perlin
noise factor.

Pixel Fog (cont.)

 This method is popular and used in both the
OpenGL and the DirectX models

 only have to apply a fog density value once to each
pixel

 However, this method has many short comings:

 glow around light sources are missing

 object shading tends to be incorrect

 may look two-dimensional in 3D space

Single Scattering Model

 The single scattering model improves upon
the pixel fog formula by:
 adding the glow around point light sources

 softening the diffuse radiance on reflected
objects

 brightening dark regions

 dimming and diffusing specular highlights

 creating a noticeable loss of contrast and color
saturation

Single Scattering Model (cont.)

 Our current Phong
illumination model
calculates light based
on the following:

 Calculating a single
scatter point and use a
Point Spread Formula
for each pixel

http://docs.google.com/File?id=dcg4s2ks_1g67kxjcd_b

Single Scattering Model (cont.)

 From a simple Phong illumination model we
can add the single scatter point and Point
Spread Formula to create the following:

Implementation

 Volumetric ray casting with Perlin noise in a
couple quadric surfaces
 Sphere

 Cone

 Cylinder

 Additional volumes (time permitting)

 Pixel fog with Perlin noise and Gaussian Filter

 The single scattering model with 2D texture
lookup (time permitting)

Potential Problems

 We are unable to achieve any functioning,
satisfactory results

 The results don’t simulate real fog very well,
so our results look really fake

 Possible 2D vs. 3D appearance

 Real fog refracts light off each water droplet and
is significantly more complex than our models

