
Fog and Cloud Effects

Karl Smeltzer

Alice Cao

John Comstock

Goal

 Explore methods of rendering scenes
containing fog or cloud-like effects through
a variety of different techniques

 Atmospheric effects make rendered scenes

 become more natural and realistic

 create a better sense of depth

 impact the viewer to wonder whether they are
indeed seeing a photo or a rendered picture

Natural Variation

 Real environmental fog and clouds vary
greatly in size, shape, definition, density, etc.

 Not feasible to judge one rendering method
as the best or most realistic

Enclosed Fog vs. Overall Fog
Fog Enclosed in a Volume Fog Around the Entire Scene

Fog Rendering Techniques

 Traditional texture mapping

 Two-dimensional noise texturing

 Volumetric ray casting

 Pixel fog

 Single scattering model

Volumetric Ray Casting
 For each pixel

 Shoot a ray through a three dimensional volume

 Take samples within the volume at various points

 Compute the color for each sample point

 Composite the various samples into a final color

Volumes using Quadric Surfaces
 The basic general form of a

three-dimensional quadric
surface function:

AX2 + BY2 + CZ2 + DXY + EXZ +
FYZ + GX + HY + IZ + J = 0

 This implies that any quadric
surface anywhere in 3D space
can be defined using ten
numbers, A through J.

Quadric Surfaces (cont.)
 This formula can then be reduced through substitution to a more familiar form:

Act
2 + Bct + Cc = 0 where

Ac = AXd
2 + BYd

2 + CZd
2 + DXdYd + EXdZd + FYdZd

Bc = 2AXoXd + 2BYoYd + 2CZoZd + DXoYd + DYoXd + EXoZd + EZoXd + FYoZd + FZoYd + GXd + HYd + IZd

Cc = AXo
2 + BYo

2 + CZo
2 + DXoYo + EXoZo + FYoZo + GXo + HYo + IZo + J

R(t) = Rdt + Ro

 This allows us to generalize two calculations:
 Visibility

We can use Bc
2 - 4AcCc to determine whether an intersection exists and then solve

the complete quadratic equation for t1 and t2, to substitute back into our R(t) above.

 Normal at any point
Given the normal defined as the following:

Nx = 2AX + DY + EZ + G
Ny = 2BY + DX + FZ + H
Nz = 2CZ + EX + FY + I

With the value for t, from the visibility calculation above, we can define
Px = Xdt + Xo

Py = Ydt + Yo

Pz = Zdt + Zo

We can now substitute the P values in for X, Y, and Z in the normal equation for the normal at any point.

Pixel Fog

 Apply a fog factor to each pixel to determine how much
of a pixel is obscured by fog. The fog factor is calculated
by linearly interpolating the accumulated color and the
fog color along a ray at various sample points.

 This can be applied to the complete rendered scene and
not just a single piece of geometry

 DirectX uses the following formula to compute the fog
coefficient:

f = e-(ρ*d*n)

with p = density, d = camera distance, and n = Perlin
noise factor.

Pixel Fog (cont.)

 This method is popular and used in both the
OpenGL and the DirectX models

 only have to apply a fog density value once to each
pixel

 However, this method has many short comings:

 glow around light sources are missing

 object shading tends to be incorrect

 may look two-dimensional in 3D space

Single Scattering Model

 The single scattering model improves upon
the pixel fog formula by:
 adding the glow around point light sources

 softening the diffuse radiance on reflected
objects

 brightening dark regions

 dimming and diffusing specular highlights

 creating a noticeable loss of contrast and color
saturation

Single Scattering Model (cont.)

 Our current Phong
illumination model
calculates light based
on the following:

 Calculating a single
scatter point and use a
Point Spread Formula
for each pixel

http://docs.google.com/File?id=dcg4s2ks_1g67kxjcd_b

Single Scattering Model (cont.)

 From a simple Phong illumination model we
can add the single scatter point and Point
Spread Formula to create the following:

Implementation

 Volumetric ray casting with Perlin noise in a
couple quadric surfaces
 Sphere

 Cone

 Cylinder

 Additional volumes (time permitting)

 Pixel fog with Perlin noise and Gaussian Filter

 The single scattering model with 2D texture
lookup (time permitting)

Potential Problems

 We are unable to achieve any functioning,
satisfactory results

 The results don’t simulate real fog very well,
so our results look really fake

 Possible 2D vs. 3D appearance

 Real fog refracts light off each water droplet and
is significantly more complex than our models

