

Goal

Brick Criteria

 Simple brick pattern defined by solid

colors for the mortar and bricks

 Indented mortar

 Graininess throughout the whole image

 Variations in color from brick to brick

 Color variations within each brick

Paint Criteria

 Painted areas defined by a solid color

 Variation in color within the painted areas

 Bumpiness within painted areas to

simulate old, peeling paint

Challenges

 Maya C++ API

 Variation in Brick and Paint Color

 Simulation of Mortar Indentation and

Paint Bumpiness

Maya API

Maya, at its core, is a dependency

graph. It allows you to feed arbitrary

data into a series of operations to

produce an output.

The data and their operations are called

nodes within the dependency graph.

Using the Maya API
 Create a node that takes a number of input

attributes and then outputs a color
attribute.
 The input attributes can be user-defined - such

as brickColor, or pre-defined - such as
normalCamera. Maya knows how to provide
your plug-in with information from the scene that
corresponds to the pre-defined attributes.

 The output attributes can also be user-defined,
or pre-defined. However, pre-defined (color,
glow color, displacement, and more) are usually
used because Maya knows how to connect
these outputs to shading groups within your
scene.

 Create a template so that the user-
defined input attributes show up in the
UI.
 The template is simply a .mel file with an „AE‟

prefix.

 Initialize user-defined and pre-defined

attributes for use in later computation

 Most of our implementation will be done in

the compute function, which is considered

the “brain” of all nodes.

Perlin Noise

 Can implement many textures: smoke, wood,

marble, etc. or in our case, the variation in

bricks and paint

 The improved algorithm, 6x^5 – 15x^4 + 10x^3

is used to smoothly interpolate between points

in 1-, 2- or 3-D space

Perlin Noise cont.

 Uses a pseudo-random number

generator

 Takes an integer and returns a random

number based on that parameter

 The same parameter returns the same

random number

Simulation of Brick Depth
 Bump map and displacement are both options.
 Displacement is one of the pre-defined outputs so

calculating it is very easy with the Maya API.

 However, displacement requires a lot of extra
vertices.

 Bump mapping can be calculated by editing the
normal and thus the pre-defined output color. The
normal in camera space, and the tangents in both
the U and V directions are pre-defined input
attributes, so Maya automatically provides their
values per pixel.

Existing Solutions
 We‟ve been unable to find a completely

procedural brick shader for Maya.
However, there are some examples of
procedural shaders in /Program
Files/Autodesk/devkit/plug-ins.

Risks

 Achieving realistic-looking bump

mapping for mortar indentation;

especially since we probably won‟t have

cast shadows between the bricks.

 Mimicking the large amount of variation

in color and texture found in a real brick

wall may require a lot of complex code.

