IADER IN MAYA

Brick Criteria

Simple brick pattern defined by solid
colors for the mortar and bricks

Indented mortar

Graininess throughout the whole image
Variations in color from brick to brick
Color variations within each brick

Paint Criteria

e N

@ Painted areas defined by a solid color
@ Variation in color within the painted areas

® Bumpiness within painted areas to
simulate old, peeling paint

Challenges

Maya C++ API
Variation in Brick and Paint Color

Simulation of Mortar Indentation and
Paint Bumpiness

Maya API

Maya, at Its core, is a dependency
graph. It allows you to feed arbitrary
data Into a series of operations to
produce an output.

| i | “

The data and their operations are called
nodes within the dependency graph.

Using the Maya AP

Create a node that takes a number of input
attributes and then outputs a color
attribute.

The input attributes can be user-defined - such
as brickColor, or pre-defined - such as
normalCamera. Maya knows how to provide
your plug-in with information from the scene that
corresponds to the pre-defined attributes.

The output attributes can also be user-defined,
or pre-defined. However, pre-defined (color,
glow color, displacement, and more) are usually
used because Maya knows how to connect
these outputs to shading groups within your
scene.

Create a template so that the user-
defined input attributes show up in the
Ul.

The template is simply a .mel file with an ‘AE’
prefix.

phongModel l

o | —Fees |
phongNode: |phongNodel [:_: : Presets |
Show Hlde

glcbal proc AEphongNodeTemplate(string $nodeName)
{

AEswatchDisplay $nodeName;
Material Sample editorTemplate -beginScrolllayout;

editorTemplate -beginlLayout "Common Material Attributes"™ -collapse 0;

editorTemplate -addControl "paintColor”™;

editorTemplate -addControl "brickColor";

editorTemplate -addControl "mortarThickness";

editorTemplate -addControl "incandescence”;

editorTemplate -addControl "diffuseReflectivity”;

editorTemplate -addControl "translucenceCoeff";
editorTemplate -endLayout;

T Caching
Node State | Normal
Translucence Coeff |0.000
Diffuse Reflectivity [0.800
Mortar Thickness {0.100 (| r—
PathdorIIIIIIIII — | —
Brick Color - —
Incandescence - S
Power [Wo_ (2} p—
Specularity ﬁiéﬁﬁ""" —
Reflection Gain W —

R A R

Initialize user-defined and pre-defined
attributes for use in later computation

MStatus PhongNode::initialize ()

{

MFnNumericAttribute nittr;
MFnLightDataAttribute 1lAttr;

aTranslucenceCoeff = nAttr.create("translucenceCoeff", "tc",
MFnNumericData: :kFloat);
MAKE INPUT (nAtctr);

aDiffuseReflectivity = nAttr.create ("diffuseReflectivity”, "drfl",
MFnNumericData: :kFloat);

MARE INPUT (nAttr);
CHECK MSTATUS (nAtctr.setDefault(0.8f));

aBias = nAttr.create("mortarThickness", "b", MFnNumericData::kFloat):;
MAKE INPUT (nAtctr);

CHECK MSTATUS (nAttr.setMin(0.0f)):;

CHECK MSTATUS (nAttr.setMax(1.0f)):

CHECK MSTATUS (nAttr.setDefault (0.1f));

Most of our implementation will be done In
the compute function, which is considered
the “brain” of all nodes.

Perlin Noise

Can implement many textures: smoke, wood,
marble, etc. or in our case, the variation in
bricks and paint

The improved algorithm, 6x"5 — 15x*4 + 10x"3
IS used to smoothly interpolate between points
In 1-, 2- or 3-D space

Perlin Noise cont.

Uses a pseudo-random number
generator

Takes an integer and returns a random
number based on that parameter

The same parameter returns the same
random number

Simulation of Brick Depth

Bump map and displacement are both options.

Displacement is one of the pre-defined outputs so
calculating it is very easy with the Maya API.

However, displacement requires a lot of extra

vertices.
—— __r_L

Bump mapping can be calculated by editing the
normal and thus the pre-defined output color. The
normal in camera space, and the tangents in both
the U and V directions are pre-defined input
attributes, so Maya automatically provides their

values per pixel.

Existing Solutions

We've been unable to find a completely
orocedural brick shader for Maya.
However, there are some examples of
procedural shaders in /Program
~1les/Autodesk/devkit/plug-ins.

_— L
. ho i~ W
F 4 - . ™

‘ ".‘* ’ — .

MEE

Achieving realistic-looking bump
mapping for mortar indentation;

especially since we probably won't have
cast shadows between the bricks.

Mimicking the large amount of variation
In color and texture found in a real brick
wall may require a lot of complex code.

