

Goal

Brick Criteria

 Simple brick pattern defined by solid

colors for the mortar and bricks

 Indented mortar

 Graininess throughout the whole image

 Variations in color from brick to brick

 Color variations within each brick

Paint Criteria

 Painted areas defined by a solid color

 Variation in color within the painted areas

 Bumpiness within painted areas to

simulate old, peeling paint

Challenges

 Maya C++ API

 Variation in Brick and Paint Color

 Simulation of Mortar Indentation and

Paint Bumpiness

Maya API

Maya, at its core, is a dependency

graph. It allows you to feed arbitrary

data into a series of operations to

produce an output.

The data and their operations are called

nodes within the dependency graph.

Using the Maya API
 Create a node that takes a number of input

attributes and then outputs a color
attribute.
 The input attributes can be user-defined - such

as brickColor, or pre-defined - such as
normalCamera. Maya knows how to provide
your plug-in with information from the scene that
corresponds to the pre-defined attributes.

 The output attributes can also be user-defined,
or pre-defined. However, pre-defined (color,
glow color, displacement, and more) are usually
used because Maya knows how to connect
these outputs to shading groups within your
scene.

 Create a template so that the user-
defined input attributes show up in the
UI.
 The template is simply a .mel file with an „AE‟

prefix.

 Initialize user-defined and pre-defined

attributes for use in later computation

 Most of our implementation will be done in

the compute function, which is considered

the “brain” of all nodes.

Perlin Noise

 Can implement many textures: smoke, wood,

marble, etc. or in our case, the variation in

bricks and paint

 The improved algorithm, 6x^5 – 15x^4 + 10x^3

is used to smoothly interpolate between points

in 1-, 2- or 3-D space

Perlin Noise cont.

 Uses a pseudo-random number

generator

 Takes an integer and returns a random

number based on that parameter

 The same parameter returns the same

random number

Simulation of Brick Depth
 Bump map and displacement are both options.
 Displacement is one of the pre-defined outputs so

calculating it is very easy with the Maya API.

 However, displacement requires a lot of extra
vertices.

 Bump mapping can be calculated by editing the
normal and thus the pre-defined output color. The
normal in camera space, and the tangents in both
the U and V directions are pre-defined input
attributes, so Maya automatically provides their
values per pixel.

Existing Solutions
 We‟ve been unable to find a completely

procedural brick shader for Maya.
However, there are some examples of
procedural shaders in /Program
Files/Autodesk/devkit/plug-ins.

Risks

 Achieving realistic-looking bump

mapping for mortar indentation;

especially since we probably won‟t have

cast shadows between the bricks.

 Mimicking the large amount of variation

in color and texture found in a real brick

wall may require a lot of complex code.

