
I

Object Role Modeling: An Overview

by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

n February 1998, Visio® Corporation acquired the assets
and technology of InfoModelers, Inc. InfoModelers was

the producer of state-of-the-art database design and access tools,
including InfoModeler®, the premier data modeling tool based on
the Object Role Modeling (ORM) methodology. The acquired
InfoModeler technology will be integrated into future versions of
Visio products, extending current capabilities to include full data-
base design and re-engineering. Visio will continue to enhance
database modeling through ORM. This overview presents data-
base professionals and other Visio users with the opportunity
to more closely examine ORM prior to the release of ORM-
empowered Visio products.

Introduction

The quality of a database application depends critically on its
design. To help ensure correctness, clarity, adaptability and pro-
ductivity, information systems are best specified first at the
conceptual level, using concepts and language that people can
readily understand. The conceptual design may include data,
process and behavioral perspectives, and the actual database
management system (DBMS) used to implement the design can
be based on one of many logical data models (relational, hierar-
chic, network, object-oriented, and so on). In this document, we
focus on the data perspective, and assume the design is to be imple-
mented in a relational database system.

Designing a database involves building a formal model of the
application area or universe of discourse (UoD). To do this properly
requires a good understanding of the UoD and a means of specify-
ing this understanding in a clear, unambiguous way. ORM simplifies
the design process by using natural language—as well as intuitive
diagrams that can be populated with examples—and by examin-
ing the information in terms of simple or elementary facts. By
expressing the model in terms of natural concepts, like objects and
roles, it provides a conceptual approach to modeling.

Early versions of ORM were developed in Europe in the mid-
1970s (e.g., binary relationship modeling and NIAM). The version
discussed here is based on the author’s formalization of the method,
and incorporates extensions and refinements arising from research
conducted in Australia and the United States. The associated

language FORML (Formal Object Role Modeling Language) is sup-
ported by InfoModeler, and will be extended in later Visio products.

Entity Relationship (ER) modeling provides another concep-
tual approach. Although ER models can be of use once the design
process is finished, they are less suitable for formulating, trans-
forming, or evolving a design. ER diagrams are further removed
from natural language, cannot be populated with fact instances,
require complex design choices about attributes, lack the
expressibility and simplicity of a role-based notation for constraints,
hide information about the semantic domains that glue the
model together, and lack adequate support for formal transforma-
tions. Many different ER notations exist that vary in the concepts
they can express and the symbols used to express those concepts.
For such reasons, ORM is preferred for conceptual modeling. Al-
though the detailed picture provided by ORM diagrams is often
desirable, for summary purposes it is useful to hide or compress
the display of much of this detail. Though not discussed in this
document, various abstraction mechanisms exist for doing this. If
desired, ER diagrams can also be used to provide compact sum-
maries, and are best developed as views of ORM diagrams. For
example, IDEF1X diagrams can be generated automatically from
ORM diagrams, and this is feasible for other ER variants, such as
UML class diagrams.

This document attempts to convey the main ideas in ORM
through a case study. First, we explain the steps used to develop a
conceptual design. The conceptual design can be specified in ei-
ther graphical or textual form. To help communicate the ideas,
we deliberately make some mistakes, and later show how the de-
sign method helps to correct them. We also include a simple
example to show how the conceptual design can be optimized
for relational systems by applying a transformation. Next, we
outline an algorithm for mapping this design to a normalized,
relational database schema. With tool support, the conceptual
design can be automatically mapped to a relational or object-
relational schema for use in a variety of DBMSs. Finally, we give
a brief sketch of how ORM can be used as a sound basis for con-
ceptual queries, object-oriented modeling, and process/event
modeling. A detailed discussion of ORM can be found in Halpin,
T.A., Conceptual Schema and Relational Database Design, 2nd edn,
Sydney: Prentice Hall Australia, 1995.

2

The conceptual schema design procedure

The information systems life cycle typically involves the follow-
ing stages:

• Feasibility study

• Requirements analysis

• Conceptual design of data and operations

• Logical design

• External design

• Prototyping

• Internal design and implementation

• Testing and validation

• Maintenance

The ORM conceptual schema design procedure (CSDP) focuses
on the analysis and design of data. The conceptual schema speci-
fies the information structure of the application: the types of fact
that are of interest, constraints on these facts, and perhaps deriva-
tion rules for deriving some facts from others.

With large-scale applications, the UoD is divided into convenient
modules, the CSDP is applied to each, and the resulting subschemas
are integrated into the global conceptual schema. The CSDP itself
has seven steps (see Table 1). We now illustrate the basic working of
this design procedure by means of a simple example.

Table 1: The conceptual schema design procedure (CSDP)

Step Description
1 Transform familiar information examples into elementary

facts, and apply quality checks

2 Draw a draft diagram of the fact types and apply a
population check

3 Check for entity types that should be combined, and note
any arithmetic derivations

4 Add uniqueness constraints, and check arity of fact types

5 Add mandatory role constraints, and check for logical
derivations

6 Add any value, set comparison, and subtyping constraints

7 Add other constraints and perform final checks

Step 1
The most important stage of the CSDP is Step 1, transforming

familiar information examples into elementary facts and applying
quality checks. Examples of the kinds of information required from
the system are verbalized in natural language. Such examples are
often available as output reports or input forms, or perhaps from a
current documented version of the required system. If the examples
are not available in these formats, the modeler can work with the
client to produce examples of output reports that are expected from
the system. To avoid misinterpretation, a UoD expert (a person
familiar with the application) should perform or at least check the
verbalization. UoD experts are also called “subject matter experts”.
As an aid to the verbalization process, the speaker imagines he or
she has to convey the information contained in the examples to a
friend over the telephone.

For this document’s case study, we consider a fragment of an
information system used by a university to maintain details about
its academic staff and academic departments. One function of the
system is to print an academic staff directory, as exemplified by the
report extract shown in Table 2. Part of the modeling task is to
clarify the meaning of terms used in such reports. The descriptive
narrative provided here would normally be derived from a discus-
sion with the UoD expert. The terms “empnr” and “extnr” abbreviate
“employee number” and “extension number”. A phone extension
may have access to local calls only (“LOC”), national calls (“NAT”),
or international calls (“INT”). International access includes na-
tional access, which includes local access. In the few cases where
different rooms or staff have the same extension, the access level is
the same. An academic is either tenured or on contract. Tenure
guarantees employment until retirement, while contracts have an
expiration date.

The information contained in Table 2 must be stated in terms
of elementary facts. Basically, an elementary fact asserts that a par-
ticular object has a property, or that one or more objects participate
in a relationship, where that relationship cannot be expressed as a
conjunction of simpler (or shorter) facts. For example, to say that
Bill Clinton jogs and is the President of the United States is to as-
sert two elementary facts.

Table 2: Extract from a directory of academic staff

Empnr EmpName Dept Room Phone Extnr Phone Access Tenured/Contract-expiry

715 Adams A Computer Science 69-301 2345 LOC 1/31/95

720 Brown T Biochemistry 62-406 9642 LOC 1/31/95

139 Cantor G Mathematics 67-301 1221 INT tenured

430 Codd EF Computer Science 69-507 2911 INT tenured

503 Hagar TA Computer Science 69-507 2988 LOC tenured

651 Jones E Biochemistry 69-803 5003 LOC 12/31/96

770 Jones E Mathematics 67-404 1946 LOC 12/31/95

112 Locke J Philosophy 1-205 6600 INT tenured

223 Mifune K Elec. Engineering 50-215A 1111 LOC tenured

951 Murphy B Elec. Engineering 45-B19 2301 LOC 1/3/95

333 Russell B Philosophy 1-206 6600 INT tenured

654 Wirth N Computer Science 69-603 4321 INT tenured

...

3

Try to read the elementary facts expressed on row 1 of Table 2.
As a first attempt, you might read the information as the six facts
f1–f6. Each asserts a binary relationship between two objects. For
discussion purposes the relationship type, or logical predicate, is
shown in bold between the noun phrases that identify the objects.
Object types are displayed here in italic. For compactness, some
obvious abbreviations are used (“empnr”, “EmpName”, “Dept”,
“extnr”); when read aloud you can expand these to “employee num-
ber”, “Employee name”, “Department”, and “extension number”.

f1 The Academic with empnr 715 has EmpName ‘Adams A’.

f2 The Academic with empnr 715 works for the Dept named ‘Computer Science’.

f3 The Academic with empnr 715 occupies the Room with roomnr ‘69-301’.

f4 The Academic with empnr 715 uses the Extension with extnr ‘2345’.

f5 The Extension with extnr ‘2345’ provides the AccessLevel with code ‘LOC’.

f6 The Academic with empnr 715 is contracted till the Date with mdy-code

‘01/31/95’.

Row 2 contains different instances of these six fact types. Row 3,
because of its final column, provides an instance of a seventh
fact type:

f7 The Academic with empnr 139 is tenured.

This is called a unary fact—it specifies one property of an ob-
ject. A logical predicate may be regarded as a sentence with one or
more object holes in it—each hole is filled by a term or noun phrase
that identifies an object. The number of object holes is called the
arity of the predicate. Each of these holes determines a different
role played in the predicate. For example, in f4 the academic plays
the role of using, and the extension plays the role of being used. In
f7 the academic plays the role of being tenured. On a diagram, each
role is depicted as a separate box (see later).

Object Role Modeling is so called because it views the world in
terms of objects playing roles. Facts are assertions that objects play
roles. An n-ary fact has n roles. It is not necessary that roles be
played by different objects. For example, consider the binary fact
type: Person voted for Person. This has two roles (voting, and being
voted for), but both could be played by the same object (e.g., Bill
Clinton voted for Bill Clinton).

In FORML a predicate may have any arity (1, 2, 3 ..), but be-
cause the predicate is elementary, arities above 3 or 4 are rare. In
typical applications, most predicates are binary. For these, we al-
low the inverse predicate to be stated as well, so that the fact may be
read in both directions. For example, the inverse of f4 is:

f4' The Extension with extnr ‘2345’ is used by the Academic with empnr 715.

To save writing, both the normal predicate and its inverse are in-
cluded in the same declaration, with the inverse predicate preceded
by a slash “/”. For example:

f4" The Academic with empnr 715 uses /is used by the Extension with extnr

‘2345’.

Typically, predicate names are unique in the conceptual schema.
In special cases, however (e.g., “has”), the same name may be used

externally for different predicates; internally these are assigned dif-
ferent identifiers.

As a quality check at Step 1, we ensure that objects are well
identified. Basic objects are either values or entities. Values are char-
acter strings or numbers: they are identified by constants (e.g.,
‘Adams A’, 715). Entities are “real world” objects that are identified
by a definite description (e.g., the Academic with empnr 715). In
simple cases, such a description indicates the entity type (e.g.,
Academic), a value (e.g., 715), and a reference mode (e.g., empnr).
A reference mode is the manner in which the value refers to the
entity. Entities may be tangible objects (e.g., persons, rooms) or
abstract objects (e.g., access levels). Composite reference schemes
are possible (described later in this section).

Fact f1 involves a relationship between an entity (a person) and
a value (a name is just a character string). Facts f2–f6 specify rela-
tionships between entities. Fact f7 states a property (or unary
relationship) of an entity.

In setting out facts f1–f7, the employee number is unquoted
while both extnr and roomnr are quoted. This indicates the de-
signer treated empnr as a number, but considered extnr and roomnr
as character strings. However, unless arithmetic operations are re-
quired for empnr, it may be quoted. Unless extnr and roomnr must
permit non-digits (e.g., hyphens or letters), or string operations
are needed for them, they may be unquoted.

As a second quality check at Step 1, we use our familiarity with
the UoD to see if some facts should be split or recombined (a for-
mal check on this is applied later). For example, suppose facts f1
and f2 were verbalized as the single fact f8:

f8 The Academic with empnr 715 and empname ‘Adams A’ works for the Dept

named ‘Computer Science’.

The presence of the word “and” suggests that f8 may be split with-
out information loss. The repetition of “Jones E” on different rows
of Table 2 shows that academics cannot be identified just by their
names. However the uniqueness of empnr in the sample popula-
tion suggests that this suffices for reference. Because the “and-test”
is only a heuristic, and sometimes a composite naming scheme is
required for identification, the UoD expert is consulted to verify
that empnr by itself is sufficient for identification. With this assur-
ance obtained, f8 is now split into f1 and f2.

As an alternative to specifying complete facts one at a time, the
reference schemes may be declared up front and then assumed in
later facts. Simple reference schemes are declared by enclosing the
reference mode in parentheses. Value types are followed by empty
parentheses. For example, the object types and their identification
schemes may be declared in this way:

Reference schemes: Academic (empnr);

AccessLevel (code);

Date (mdy)

Dept (name);

EmpName();

Extension (extnr);

Room (roomnr);

4

Then facts f1–f7 may be stated more briefly as
follows. Here the names of object types begin
with a capital letter:

f1 Academic 715 has EmpName ‘Adams A’.

f2 Academic 715 works for Dept ‘Computer Science’.

f3 Academic 715 occupies Room ‘69-301’.

f4 Academic 715 uses Extension ‘2345’.

f5 Extension ‘2345’ provides AccessLevel ‘LOC’.

f6 Academic 715 is contracted till Date ‘01/31/95’.

f7 Academic 139 is tenured.

These facts are instances of the following fact
types:

F1 Academic has EmpName

F2 Academic works for Dept

F3 Academic occupies Room

F4 Academic uses Extension

F5 Extension provides AccessLevel

F6 Academic is contracted till Date

F7 Academic is tenured

Step 2
In Step 2 of the CSDP, we draw a draft diagram of the fact types

and apply a population check (see Figure 1). Entity types are de-
picted as named ellipses. Predicates are shown as named sequences
of one or more role boxes, with the predicate name starting in or
beside the first role box. Each predicate is ordered, from its first
role box to the other end. An n-ary predicate has n role boxes. The
inverse predicate names are omitted in this figure. Value types are
displayed as named, broken ellipses. Lines connect object types to
the roles they play. Reference modes are written in parentheses:
this is an abbreviation for the explicit portrayal of reference types.
For example, the notation “Academic (empnr)” indicates an injec-
tion (1:1-into mapping) from the entity type Academic to the value
type empnr.

In this example there are seven fact types. As a check, each is
populated with at least one fact, shown as a row of entries in the
associated fact table, using the data from rows 1 and 3 of Table 2.

The English sentences listed before as facts f1–f7, as well as other
facts from row 3, can be read directly off this figure. Though useful
for validating the model with the client and for understanding con-
straints, the sample population is not part of the conceptual schema
diagram itself.

To help illustrate other aspects of the CSDP, we now widen our
example. Suppose the information system is also required to assist
in the production of departmental handbooks. Perhaps the task of
schema design has been divided up, and another modeler works
on the subschema relevant to department handbooks. Figure 2
shows an extract from a page of one such handbook. In this uni-
versity academic staff are classified as professors, senior lecturers,
or lecturers, and each professor holds a “chair” in a research area.
To reduce the size of our problem, we have excluded many details

that in practice would also be recorded (e.g., office phone and faxnr).
To save space, details are shown here for only 4 of the 22 academics
in that department. (The data is, of course, fictitious.)

In verbalizing a report, at least one instance of each fact type
should be stated. Let us suppose that the designer for this part of
the application suggests the following fact set, after first declaring
the following reference schemes: Dept (name); Professor (name);
SeniorLecturer (name); Lecturer (name); Quantity (nr)+; Chair
(name); Degree (code); University (code); Phonenr(). The “+” in
“Quantity (nr)+” indicates that Quantity is referenced by a num-
ber, not a character string, and hence may be operated on by
numeric operators such as “+”. For discussion purposes, the predi-
cates are shown here in bold. In fact f13, a hyphen is used after
“home” to bind the adjective to the following noun when con-
straints are verbalized (e.g., “has at most one home Phonenr” reads
better than “has home at most one Phonenr”).

Extension
(extnr)

Academic
(empnr)

Dept
(name)

AccessLevel
(code)

Date
(mdy)

Room
(roomnr)

EmpName

is used by / uses

2345 LOC
1221 INT 715 Adams A

139 Cantor G

is contracted ti l l

is tenured

2345 715
1221 139

715 Computer Science
139 Mathematics

715 01/31/97

139

69-301 715
67-301 139

provides
has

works for

occupies

Figure 1: Draft diagram of fact types for Table 2 with sample population

Figure 2: Extract from Handbook of Computer Science Department

Department: Computer Science
 Home phone of Dept head: 9765432

Chairs Professors (5)

Databases Codd EF BSc (UQ); PhD (UCLA) (Head of Dept)
Algorithms Wirth N BSc (UQ); MSc (ANU); DSc (MIT)
…

Senior Lecturers (9)

Hagar TA BInfTech (UQ); PhD (UQ)
…

Lecturers (8)

Adams A MSc (OXON)
…

5

f9 Dept ‘Computer Science’ has professors in Quantity 5.

f10 Professor ‘Codd EF’ holds Chair ‘Databases’.

f11 Professor ‘Codd EF’ obtained Degree ‘BSc’ from University ‘UQ’.

f12 Professor ‘Codd EF’ heads Dept ‘Computer Science’.

f13 Professor ‘Codd EF’ has home- Phonenr ‘965432’.

f14 Dept ‘Computer Science’ has senior lecturers in Quantity 9.

f15 SeniorLecturer ‘Hagar TA’ obtained Degree ‘BInfTech’ from University ‘UQ’.

f16 Department ‘Computer Science’ has lecturers in Quantity 8.

f17 Lecturer ‘Adams A’ obtained Degree ‘MSc’ from University ‘OXON’.

As a quality check for Step 1, we again consider whether entities
are well identified. It appears from the handbook example that
within a single department, academics may be identified by their
name. Let us assume this is verified by the UoD expert. However,
the complete application requires us to handle all departments in
the same information system, and to integrate this subschema with
the directory subschema considered earlier.

As a result, we must replace the academic naming convention
used for the handbook example by the global scheme used earlier
(i.e., empnr). Suppose that we can’t see anything else wrong with
facts f9–17, and proceed to expand the draft schema diagram to
include this new information (this is left as an exercise for the
reader).

Step 3
At Step 3 of the CSDP, we check for entity types that should be

combined and note any arithmetic derivations. The first part of this
step prompts us to look carefully at the fact types for f11, f15, and
f17. Currently these are handled as three ternary fact types:

• Professor obtained Degree from University

• SeniorLecturer obtained Degree from University

• Lecturer obtained Degree from University

The common predicate suggests that the entity types Professor,
SeniorLecturer, and Lecturer should be collapsed
to the single entity type Academic, with this
predicate now shown only once, as shown in Fig-
ure 3. To preserve the original information about
who is a professor, senior lecturer, or lecturer,
we introduce the fact type: Academic has Rank.
Let’s use the codes “P”, “SL” and “L” for the ranks
of professor, senior lecturer, and lecturer. For ex-
ample, instead of fact f10 we now have:

f18 Academic 430 has EmpName ‘Codd EF’.

f19 Academic 430 has Rank ‘P’.

f20 Academic 430 holds Chair ‘Databases’.

Facts of the kind expressed in f9, f14, and f16
can now all be expressed in terms of the ternary
fact type: Dept employs academics of Rank in
Quantity. For example, f9 may be replaced by:

f9' Dept ‘Computer Science’ employs academics of Rank

‘P’ in Quantity 5.

However, this does not tell us which professors work for the Com-
puter Science department. Indeed, given that many departments
exist, the verbalization in f9–f17 failed to capture the information
about who worked for that department. This information is im-
plicit in the listing of the academics in the Computer Science
handbook. To capture this information in our application model,
we introduce the following fact type: Academic works for Dept.
For example, one fact of this kind is:

f21 Academic 430 works for Dept ‘Computer Science’

The second aspect of Step 3 is to see if some fact types may be
derived from others by arithmetic. Because we now record the rank
of academics as well as their departments, we can compute the
number in each rank in each department simply by counting. So
facts like f9' are derivable. If desired, derived fact types may be
included on a schema diagram if they are marked with an asterisk
“*” to indicate their derivability. To simplify the picture, it is usually
better to omit derived predicates from the diagram. However, in all
cases a derivation rule must be supplied. This may be written below
the diagram (see Figure 3). Here “iff” abbreviates “if and only if”.

Step 4
In Step 4 of the CSDP, we add uniqueness constraints and check

the arity of the fact types. Uniqueness constraints are used to assert
that entries in one or more roles occur there at most once. A bar
across n roles of a fact type (n > 0) indicates that each correspond-
ing n-tuple in the associated fact table is unique (no duplicates are
allowed for that column combination). Arrow tips at the ends of
the bar are needed if the roles are noncontiguous (otherwise arrow
tips are optional). A uniqueness constraint spanning roles of dif-
ferent predicates is indicated by a circled “u”: this specifies that in
the natural join of the predicates, the combination of connected
roles is unique.

Figure 3: Extra fact types needed to capture the additional information in Figure 2

Rank
(code)

Academic
(empnr)

Chair
(name)

Dept
(name)

Degree
(code)

Universi ty
(code)

... obtained ... from ...

* Dept d employs academics of Rank r in Quantity q iff q =
 count each Academic who has Rank r and works for Dept d

works for

has

heads

holds

Phonenr

has home-

6

For example, a fragment of the conceptual schema under con-
sideration is displayed in Figure 4. While these constraints are
suggested by the original population, the UoD expert should nor-
mally be consulted to verify them. It is sometimes helpful to
construct a test population for each fact type in this regard, though
simple questions are usually more efficient.

The internal uniqueness constraints on the binary fact types
assert that each academic has at most one rank, holds at most one
chair (and vice versa), works for at most one department, and has
at most one employee name. The external uniqueness constraint
stipulates that each department–empname combination applies
to at most one academic (i.e., within the same department, aca-
demics have distinct names). The constraint on the ternary says
that for each academic–degree pair, the award was obtained at
only one university.

Once uniquness constraints have been added, an arity check is
performed. A sufficient but not necessary condition for an n-ary
fact type to be split is that it has a uniqueness constraint that misses
two roles. For example, suppose we tried to use the ternary in Fig-
ure 5. Because each academic has only one rank and works for
only one department, the uniqueness constraint spans just the first
role. This misses two roles of the ternary; so the fact type must be
split on the source of the uniqueness constraint into the two bina-
ries: Academic has Rank; Academic works for Dept.

If a fact type is elementary, all its functional dependencies (FDs)

are implied by uniqueness constraints. For example, each academic
has only one rank (hence in the fact table for Academic-has-Rank,
entries in the rank column are a function of entries in the aca-
demic column). If in doubt, we check for FDs not so implied; if
such an FD is found, the fact type is split on the source of the FD.

Step 5

Step 5 of the CSDP is to add mandatory role
constraints and check for logical derivations. A role
is mandatory (or total) for an object type if and
only if every object of that type that occurs in the
database must be known to play that role. This is
explicitly shown by a mandatory role dot where the
role connects with its object type. If two or more
roles are connected to the same mandatory role
dot, this means the disjunction of the roles is man-
datory (i.e., each object in the population of the
object type must play at least one of these roles).

For example, Figure 6 adds mandatory role
constraints to some of the fact types already dis-
cussed. These dots indicate that each academic has
a rank and works for a department; moreover each
academic either is contracted until some date or is

tenured. Roles that are not mandatory are optional. The role of
having a chair is optional. The roles of being contracted or being
tenured are optional, too, but their disjunction is mandatory. If an
object type plays only one fact role in the global schema, then by
default this is mandatory, but a dot is not shown (e.g., the role
played by Rank is mandatory by implication).

Now that we have discussed uniqueness and mandatory role con-
straints, reference schemes can be better understood. Simple reference
schemes involve a mandatory 1:1 mapping from entity type to value
type. For example, the notation “Rank (code)” abbreviates the bi-
nary reference type: Rank has Rankcode. If shown explicitly, both
roles of this binary have a simple uniqueness constraint, and the
reference role played by Rank has a mandatory role dot.

With composite reference, a combination of two or more val-
ues may be used to refer to an entity. For example, while empnr
provides a simple primary identifier for Academic, the combina-
tion of Dept and EmpName provides a secondary identification
scheme. Sometimes composite schemes are used for primary
reference. For example, suppose that to help students find their

Figure 4: Some of the fact types, with uniqueness constraints added

Rank
(code)

Academic
(empnr)

Chai r
(name)

Dept
(name)

Degree
(code)

Universi ty
(code)

... obtained ... from ...

E m p N a m e

u

has

works for

ho lds has

Figure 6: Some of the fact types, with mandatory role constraints added

Rank
(code)

Academic
(empnr)

Chai r
(name)

Dept
(name)

Date
(mdy)

is tenured

is contracted t i l l

works for

ho lds

has

Figure 5: This fact type splits because two roles are
missed by the uniqueness constraint

Academic

Rank

Dept

... of ... works for ...

7

way to lectures, departmental handbooks include a building direc-
tory, which lists the names as well as the numbers of buildings. A
sample extract of such a directory is shown in Table 3.

Table 3: Extract from a directory of buildings

Bldgnr BldgName

… …

67 Priestly

68 Chemistry

69 Computer Science

… …

Earlier we identified rooms by a single value. For example “69-
301” was used to denote the room in building 69 that has room
number “301”. Now that buildings are to be talked about in their
own right, we should replace the simple reference scheme by a
composite one that shows the full semantics (see Figure 7). Here
Roomnr now means just the number (e.g., “301”) used to identify
the room within its building. This is used in conjunction with the
Buildingnr to identify the room within the whole university. To
explicitly indicate that the external uniqueness constraint provides
the primary reference for Room, the circled “u” may be replaced by
a circled “P” (see Figure 7).

Knowledge of uniqueness constraints and mandatory roles
can assist in deciding when to nest a fact type. The ternary in
Figure 4 could have been modeled by nesting as follows. First
declare the binary: Academic obtained Degree. Now objectify
relationship instances of this type by wrapping a frame
(rounded rectangle) around the predicate, and adding a name
(e.g., “DegreeAcquisition”). Now attach another binary predicate
to this frame to connect it to University. This yields the nested
version: DegreeAcquisition[Academic obtained Degree] was from
University.

In this case, the objectified predicate plays only one role, and
this role is mandatory. Whenever this happens we prefer the flat-
tened version instead of the nested version, because it is more
compact and natural, and it simplifies constraint expression. In all
other cases, the nested version is preferred (i.e., choose nesting if
the objectified predicate plays an optional role, or plays more than
one role).

As an example, suppose the application also has to deal with
reports about teaching commitments, an extract of which is
shown in Table 4. Not all academics currently teach. If they

do, their teaching in one or more subjects may be evaluated and
given a rating. Some teachers serve on course curriculum com-
mittees.

Table 4: Extract of report on teaching commitments

Empnr Emp. name Subject Rating Committees

715 Adams A CS100 5
CS101

430 Codd EF

654 Wirth N CS300 BSc-Hons
CAL Advisory

Here the new fact types may be schematized as shown in Fig-
ure 8. By default, an objectified predicate is fully spanned by a
uniqueness constraint, to ensure elementarity (this is implicit in
the frame notation, but may be shown explicitly as in the figure).
Because not all 〈Academic, Subject〉 pairs involved in Teaching have
a rating, nesting is preferred. To flatten this we would need a binary
for teaching subjects, and a ternary for rating the teaching of sub-
jects, with a pair subset constraint (see later) between them.

The nested object type Teaching plays only one role, and this
role is optional. So instances of Teaching can exist independently
without having to play a fact role. This makes teaching an indepen-
dent object type. The independence of an object type is indicated
by appending “!” to its name.

The second stage of Step 5 is to check for logical derivations
(i.e., can some fact type be derived from others without the use of
arithmetic?). One strategy here is to ask whether there are any rela-
tionships (especially functional relationships) that are of interest
but which have been omitted so far.

Another strategy is to look for transitive patterns
of functional dependencies. For example, if an aca-
demic has only one phone extension and an extension
is in only one room, these fact types determine the
room of the academic. However, for our application
the same extension may be used in many rooms, so
we discard this idea.

Suppose however that our client confirms that the
rank of an academic determines the access level of
his or her extension. For example, suppose a current

Figure 7: Room has a composite, primary reference scheme

R o o m

Building
(bldgnr)

B ldgName

Roomnr

is in

has

has

P

Figure 8: Example of nesting

Academic
(empnr)

Subject
(code)

Rating
(nr)+

Commit tee
(name)

teaches

"Teaching !"

gets

serves on

8

business rule is that professors get international access while lec-
turers and senior lecturers get local access. This rule might change
in time (e.g., senior lecturers might be arguing for national access).
To minimize later changes to the schema, we store the rule as data
in a table (see Table 5). The rule can then be updated as required
by an authorized user without having to recompile the schema.

Table 5: A functional connection between rank and access level

Rank Access

P INT

SL LOC

L LOC

Suppose we verbalize the fact type underlying Table 5 as: Rank
ensures AccessLevel. The three fact instances listed in the table can
be used to derive the access level of the hundreds of academic ex-
tensions, using the following derivation rule:

define Extension provides AccessLevel as

Extension is used by an Academic who has a Rank that ensures AccessLevel

Examination of the related portion of the schema indicates that
this rule is safe only if each extension is used by only one academic,
or at least only by academics of the same rank. Let us assume the
first, stronger condition is verified by the client. In the case of the
weaker condition, the constraint must be specified textually rather
than on the diagram. At any rate, by adding the Rank ensures
AccessLevel fact type and the above derivation rule, we can remove
the Extension provides AccessLevel fact type from the diagram.

Step 6
In Step 6 of the CSDP, we add any value, set comparison and

subtyping constraints. Value constraints specify a list of possible val-
ues for a value type. These usually take the form of an enumeration
or range, and are displayed in braces beside the value type or its
associated entity type. For example, Rankcode is restricted to
{‘P’,‘SL’,‘L’} and AccessLevelcode to {‘INT’,‘NAT’,‘LOC’}. These are
displayed in the final, global conceptual schema (Figure 10).

Set comparison constraints specify subset, equality, or exclu-
sion constraints between compatible roles or between sequences
of compatible roles. Roles are compatible if they are played by the
same object type (or by object types with a common supertype,
described later). In Figure 10, a pair-subset constraint (4) runs
from the heads predicate to the works-for predicate, indicating
that a person who heads a department must work for the same
department.

An equality constraint (34) is equivalent to a pair of subset
constraints (one in each direction). For example, in this applica-
tion a person’s home phone is recorded if and only if the person
heads some department. This could be depicted by an equality
constraint between the first roles of two fact types: Professor heads
Dept; Professor has home-Phone. However we later choose
another way of modeling this. The constraint that nobody can
be tenured and contracted at the same time is shown by an exclu-
sion constraint (⊗).

Subtyping is determined as follows. If an optional role is played
only by some well-defined subtype, a subtype node is introduced
with this role attached. Subtype definitions are written below the
diagram and subtype links are shown as directed line segments
from subtypes to supertypes. Figure 10 contains three subtypes:
Teacher, Professor, and TeachingProf. In this university, each
teacher is audited by another teacher (auditing involves observa-
tion and friendly feedback). Moreover, only professors may be
department heads, and only teaching professors can serve on
curriculum committees (not all universities work this way).

Step 7
Step 7 of the CSDP adds other constraints and performs final

checks. We briefly illustrate two other constraints. The audits fact
type has both its roles played by the same object type (this is called
a ring fact type). The oir notation beside it indicates the predicate is
irreflexive (no teacher audits himself/herself).

Suppose we also need to record the teaching and research bud-
gets of the departments. We might schematize this as in Figure 9.
Here the “2” beside the role played by Dept is a frequency constraint
indicating that each department that is included in the population
of that role must appear there twice. In conjunction with the other
constraints, this ensures that each department has both its teach-
ing and research budgets recorded.

The CSDP ends with some final checks to ensure that the schema
is consistent with the original examples, avoids redundancy, and is
complete. No changes are needed for our example. There is a mi-
nor derived redundancy, because if someone heads a department,
we know from the subset constraint that this person works for that
department; but this is innocuous. Other schematizations are pos-
sible (e.g., we can define works in and heads to be pair-exclusive,
or use a unary is head instead of the binary heads) but we ignore
these alternatives here.

Once the global schema is drafted, and the target DBMS decided,
various optimizations can usually be performed to improve the
efficiency of the logical schema that will result from the mapping.
Assuming the conceptual schema is to be mapped to a relational
database schema, the fact type in Figure 9 will map to a separate
table all by itself (because of its composite uniqueness constraint).
Because some other information about departments is mapped to
another table, if we want to retrieve all the details about depart-
ments in a single query we will have to perform a table join. Joins
tend to slow things down. Moreover, we probably want to compute

Figure 9: Each department has two budgets

Dept
(name)

Activity
(name)

MoneyAmt
(usd)+

2

... has for ... a budget of ...

{ 'Teaching', 'Research'}

9

the total budget of a department, and with the current schema this
will involve a self-join of the table, because the details of the two
budgets are on separate rows. We can avoid all these problems by
transforming the ternary fact type in Figure 9 into the following
two binaries before we map: Dept has teaching budget of
MoneyAmt; Dept has research budget of MoneyAmt. These bina-
ries have simple keys, and will map to the “main” department table.

Another optimization may be performed that moves the home
phone information to Dept instead of Professor, but the steps un-
derlying this are a little advanced, so we ignore a detailed discussion
of this move here. Figure 10 includes both these revisions to the
conceptual schema. For a detailed discussion on conceptual schema
optimization, see chapter 9 of Conceptual Schema and Relational
Database Design.

Figure 10: The final conceptual schema

Academic
(empnr) is tenured

Degree
(code)

gets

...obtained...from...

Date
(mdy)

Room

Building
(bldgnr)

has

Extension
(extnr)

is used by / uses

is contracted ti l l

works for

Dept
(name)

heads

MoneyAmt
(usd) +

has
research

budget
of

has
teaching
budget
of

Rank
(code)

has

AccessLevel
(code)

{'P','SL','L'}

{ ' INT', 'NAT', 'LOC'}

ProfessorTeacher

Teaching
Prof

is audited by /audits

Oir

Chair
(name)Commit tee

(name)

holds

serves
on

University
(code)

Subject
(code)

Rating
(nr)+

teaches

eac h Teacher is an Academic wh o teaches som e Subject
eac h Professor is an Academic wh o has Rank ‘P’
eac h TeachingProf is both a Teacher and a Professor

* Dept d employs academics of Rank r in Quantity q iff q =
 coun t eac h Academic wh o has Rank r and works for Dept d

* defin e Extension provides AccessLevel as
Extension is used by an Academic wh o has a Rank tha t ensures AccessLevel

"Teaching ! "

ensures

occupies

has
{1..7}

B ldgName

Roomnr

EmpName

u

is in

P

has

Phonenr

head has home-

10

Relational mapping

Once the conceptual schema is specified, a simple algorithm is
used to group these fact types into normalized tables. If the con-
ceptual fact types are elementary (as they should be), then the
mapping is guaranteed to be free of redundancy, because each fact
type is grouped into only one table, and fact types that map to the
same table all have uniqueness constraints based on the same
attribute(s).

Before discussing the mapping, we define a few terms. A simple
key may be thought of as a uniqueness constraint spanning exactly
one role; a composite key is a uniqueness constraint spanning more
than one role. A compidot (compositely identified object type) is
either a nested object type (an objectified predicate) such as Teach-
ing, or a co-referenced object type (its primary reference scheme is
based on an external uniqueness constraint) such as Room.

The basic stages in the mapping algorithm are as follows.

1. Initially treat each compidot as an atomic “black box” by
mentally erasing any predicates used in its identification,
and absorb subtypes into their supertype.

2. Map each fact type with a composite key into a separate
table, basing the primary key on this key.

3. Group fact types with simple keys attached to a common
object type into the same table, basing the primary
key on the identifier of this object type.

4. Unpack each mapped compidot into its compo-
nent attributes.

With stage 3, a choice may arise with 1:1 binaries. If
one role is optional and the other mandatory, then the
fact type is grouped with the object type on the manda-
tory side. For example, the head-of-department fact type
is grouped into the department table. Other refinements
to the algorithm have been developed (e.g., other options
for 1:1 cases and subtyping, mapping of independent ob-
ject types, certain derived fact type cases, and partially null
keys), but we do not consider these here.

Conceptual constraints and derivation rules are also
mapped down. An exhaustive treatment of the mapping
procedure is beyond the scope of this document. The con-
ceptual schema under discussion maps to the relational
schema shown in Figure 11. A generic notation (partly
graphical) is used to specify the tables and constraints of
resulting relational schema, and derivation rules are ex-
pressed as SQL views.

Keys are underlined. If alternate keys exist, the primary
key is doubly-underlined. A mandatory role is captured
by making its corresponding attribute mandatory in its
table (not null is assumed by default), by marking as op-
tional (in square brackets) all optional roles for the same
object type that map to the same table, and by running an
equality/subset constraint from those mandatory/optional
roles that map to another table.

Most conceptual constraint notations map down with little
change. Constraints on lists of role lists (e.g., subset, equality, ex-
clusion) map to corresponding constraints on the attributes to
which they map. Equality constraints may be shown without arrow-
heads. Subtype constraints are typically stated as qualifications on
square brackets or as qualifications on intertable subset constraints.

Conceptual object types are semantic domains: as current rela-
tional systems do not support this feature, domain names are usually
omitted. Syntactic domains (data types) may be specified next to
the column names if desired: if the reference mode has a “+”, the
default data type is numeric, else the default is character string; the
designer typically chooses more specific data subtypes as appro-
priate.

The 〈2,1〉 in the pair-subset constraint indicates the source pair

should be reversed before the comparison. In other words, the or-
dered pairs populating Department(headempnr, deptname) must
also occur in the population of Academic(empnr, deptname).

Derived tables are shown below the base tables. The notation
“R(..) ::=” is short for “create view R(..) as select”. As with con-
ceptual schemas, relational schemas may be displayed with levels
of information hiding (e.g., for a brief overview some or all of the
constraint layers may be suppressed).

Figure 11: The relational schema mapped from Figure 10

Bui lding (b ldgnr, b ldgname)

 {L,S,P} {INT,NAT,LOC}

PhoneAccess (rank, accesslevel)

Depar tment (dep tname, headempnr, homephone, teachingbudget ,
 researchbudget)

 {P,SL,L}

Academic (empnr, empname, dep tname, extn, rank, bldgnr, roomnr,
 tenured, [enddate]1 , [chair]2, [auditor]3,4)
 {Y,N}

Award (empnr , degree, university)

Teaching (empnr, subject, [rating])
 {1..7}

C teeMember (empnr , commit tee)

1 exists iff tenured = ‘N’
2 exists iff rank = ‘P’
3 <> empnr
4 exists iff empnr in Teaching.empnr
5 only where rank = ‘P’

* Provides (extn, accesslevel) : := extn, accesslevel from
Academic natural join PhoneAccess

* Employs (deptname, rank, nrstaff) : := deptname, rank, count (*)
from Academic
group by deptname, rank

<2,1>

5

5

11

Conceptual queries

In addition to information modeling, ORM is also ideal for
information querying. Using a language such as ConQuer
(CONceptual QUERy language), an ORM model may be queried
directly, avoiding the need to specify queries in terms of the
underlying DBMS structures. As a simple example, consider the
following English query on our academic database: list the empnr,
empname and number of subjects taught for each academic who
occupies a room in the Chemistry building and teaches more than
two subjects. This can be expressed in ConQuer as follows:

Academic
is identi f ied by ü E m p n r

has ü E m p n a m e

occup ies Room

is in Bui lding

has B ldgName ‘Chemis t ry ’

teaches Subjec t

ü count (Subject) for Academic >2

A verbalization of the query is easily produced, and the SQL
code is similar to the following:

select X1.empnr, X1.empname, count(*)

from Academic X1, Building X2, Teaching X3

where X1.bldgnr = X2.bldgnr

 and X1.empnr = X3.empnr

 and X2.bldgname = ‘Chemistry’

group by X1.empnr, X1.empname

having count(*) >2

As you can see, formulating queries in terms of objects and
predicates is much easier than deciphering the semantics of the
relational schema and coding in SQL or QBE.

Object orientation

Although standard ORM includes some object-oriented (OO)
features (e.g., inheritance), it differs from typical object-oriented
approaches. This is actually a good thing, since OO approaches do
not provide a clean conceptual path to information systems mod-
eling. For example, OO methods are poor at providing structures
that facilitate communication between modeler and client (e.g.,
consider fact instances and constraints), and they complicate the
analysis phase with implementation details (e.g., immediate com-
mitment on how facts are grouped into objects, and redundant
specification).

As a simple example, consider two fact types from our academic
UoD: Academic works for /employs Dept; Professor heads /is
headed by Dept. Typically, OO approaches store each of these twice,
once for each object type. For example, the Academic “object” might
include the single-valued attribute “deptWorkedFor” while the Dept
object includes the set-valued attribute “academicEmployees”. The
forward and inverse versions now need to be kept synchronized.

Consider the constraint that professors can head a department
only if that is the department in which they work. In ORM this is

specified declaratively, and checked with clients by populating the
fact types. In OO this constraint is easy to miss, and if captured at
all it is buried in procedural code. Worse still, because constraints,
like facts, are supposed to reside inside objects, the modeler has to
worry about where to put the constraint. Do we put it inside the
Dept object, the Academic object, the Professor object, or all three?
Clearly such decisions concern implementation details, and it is
unwise to burden modelers with such decisions while they are try-
ing to arrive at a conceptual picture of the UoD.

For such reasons, we recommend using ORM to develop the
original conceptual model. After that, abstraction mechanisms may
be applied to automatically generate an OO view of the ORM
schema (in a similar way to generating an ER view). The concep-
tual schema may be implemented in a relational database,
object-oriented database, or other database, by using a different
mapping algorithm.

One OO aspect not covered here is the ability to encapsulate
operations (or “methods”) inside objects. Standard ORM needs to
be extended to cater for this as well as process/event modeling. We
now briefly sketch how this can be done.

Process/event modeling

Unlike data modeling approaches, which tend to fall within a
few broad classes (e.g., ER, ORM), there are dozens of different
approaches being used to model processes and events. Most of
these can be used in conjunction with ORM. Visio® Professional
already provides basic support for various approaches to process/
event modeling (e.g., IDEF0), and more extensive support is cur-
rently under development.

Formal integration of the data/process/event models and cross-
consistency checking requires that the relevant data model
component is defined before its operations are bound to it. At
the atomic level, processes can be translated into transactions
comprised of addition/deletion of elementary facts. However a
higher abstraction level is required for convenience. An algorithm
can be used to identify major object types (e.g., Employee) on
which not just attributes (as views of fact types) but operations
(e.g., hire, promote, fire) can be defined. Basically we can work
with an object-oriented view for this specification, while main-
taining all the benefits of a flat ORM model underneath. Just as
ER can be provided as an ORM view, techniques such as those
within UML that apply operations to entity types can be sup-
ported as well.

Further details

For a detailed treatment of Object Role Modeling, see Halpin,
T.A. 1995, Conceptual Schema and Relational Database Design, 2nd
edn, Sydney: Prentice Hall Australia, 1995 (available through
Amazon.com). Another overview article by the author, titled “Busi-
ness Rules and Object-Role Modeling,” appeared in the October
1996 issue of Database Programming & Design. For additional
information on Object Role Modeling, see the Visio Web site
(www.visio.com).

Printed in the USA

Part No. 13315-0398

For More Information

Visio Corporation

520 Pike Street, Suite 1800
Seattle, WA 98101
U.S.A.
Tel: +206.521.4500
Fax: +206.521.4501

Visio International Limited

European Operations
Fitzwilton House, Wilton Place
Dublin 2
Ireland
Tel: +353.1.6612036
Fax: +353.1.6612047

Visio Singapore Pte Ltd

Asia Pacific Operations
331 North Bridge Road
#13-01 Odeon Towers
Singapore 188720
Tel: +65.334.6588
Fax: +65.334.2388

Visio GmbH

Boschetsrieder Str. 67
81379 München
Deutschland
Tel: +49.89.74.85.47/0
Fax: +49.89.74.85.47/77

Disclaimer

© 1997–98 Visio Corporation. All rights reserved.

Information in these materials is furnished for informational use only, is subject to change without notice and does not represent a commitment on the part of Visio
Corporation. Visio Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in these materials. Use these materials at your
own risk.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, VISIO CORPORATION AND ITS SUPPLIERS DISCLAIM ANY AND ALL WARRANTIES AND CONDI-
TIONS, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE, AND NON-INFRINGEMENT, AND THOSE ARISING OUT OF USAGE OF TRADE OR COURSE OF DEALING, CONCERNING THESE MATERIALS. THESE MATE-
RIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL VISIO CORPORATION OR ITS SUPPLIERS (OR THEIR RESPECTIVE AGENTS,
DIRECTORS, EMPLOYEES OR REPRESENTATIVES) BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, CONSEQUENTIAL, INCI-
DENTAL, INDIRECT, SPECIAL, ECONOMIC, PUNITIVE OR SIMILAR DAMAGES, OR DAMAGES FOR LOSS OF BUSINESS PROFITS, LOSS OF GOODWILL, BUSINESS
INTERRUPTION, COMPUTER FAILURE OR MALFUNCTION, LOSS OF BUSINESS INFORMATION OR ANY AND ALL OTHER COMMERCIAL OR PECUNIARY DAM-
AGES OR LOSSES) ARISING OUT OF THE PURCHASE OR USE OF THESE MATERIALS, HOWEVER CAUSED AND ON ANY LEGAL THEORY OF LIABILITY (WHETHER
IN TORT, CONTRACT OR OTHERWISE), EVEN IF VISIO CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

Visio, the Visio logo, the Visio Solutions Library logo, Visio Solutions Library, SmartConnectors and SmartShapes are either trademarks or registered trademarks of
Visio Corporations in the United States and/or other countries. All other trademarks, trade names, or company names referenced herein are used for identification
only and are the property of their respective owners.

Visio S.A.R.L.

Club Affaires
35, cours Michelet
La Défense 10 Cedex
92060 Paris - La Défense
France
Tel: +33.1.47.73.90.90
Fax: +33.1.47.76.44.36

Visio International (UK) Limited

The White House
18 Church Road
Leatherhead, KT22 8BB
United Kingdom
Tel: +44.1372.227900
Fax: +44.1372.361778

Visio International Incorporated

Latin America
4370 N.W. 101 Drive
Coral Springs, FL 33065
U.S.A.
Tel: +954.344.8929
Fax: +954.344.3548

Visio Japan K K

Ebisu Prime Square Tower 5F
1-39, Hiro-o 1-chome, Shibuya-ku
Tokyo 150-0012
Japan
Tel: +81.3.5485.6561
Fax: +81.3.5485.6562

Visio International Incorporated

Asia, Pacific
Sri Penaga, Suite 37-4-1
Jalan Medang Serai
Bukit Bandar Raya
59100 Kuala Lumpur
Malaysia
Tel: +603.254.9718
Fax: +603.430.3025

Visio Australia Pty Limited

Australia, New Zealand
Level 17
275 Alfred Street
North Sydney NSW 2060
Australia
Tel: +612.9929.2399
Fax: +612.9929.2349

