
University of Washington, Bothell
CSS 482: Expert Systems

Fall 2010
In-Class Exercises

Weeks 1–3

This document outlines a problem domain that we will use in class to build up successively more so-
phisticated knowledge representations using facts and rules, eventually resulting in a working expert system.
The problem domain is that of scheduling courses for the year. The goal is to have an expert system that
receives as input the courses a student has already taken and then outputs a legal plan of study for the year.
We will build this a step at a time.

Expertise You can find the course schedule for the 2010–11 academic year at http://www.uwb.edu/css/
courses/time-schedule and the set of prerequisites for each course at http://www.uwb.edu/css/courses/
course-prereqs.

Facts We need to identify the types of declarative knowledge in this problem domain. Then, we need to
develop a representation for this knowledge. Luckily, expert systems lend themselves to experimentation.

1. Identify one kind of declarative knowledge contained in the expertise above. Propose a representation
using simple ordered facts.

2. Does your fact representation contain enough information that you could write a simple rule to infer
something new? What kind of knowledge is this new fact you inferred (or is it even a fact)? Does it
require a new representation as an ordered fact? If your factual knowledge is incomplete and doesn’t
allow anything interesting to happen, then skip to the next step. Otherwise, state your rule and a fact
that it could infer.

1

http://www.uwb.edu/css/courses/time-schedule
http://www.uwb.edu/css/courses/time-schedule
http://www.uwb.edu/css/courses/course-prereqs
http://www.uwb.edu/css/courses/course-prereqs


3. There are two basic kinds of information available from the web pages above: course schedule (what
courses are to be offered in which quarter) and course prerequisite (what courses must be taken before
the given course can be taken). Actually, there is a third kind of information — co-requisites — but
we will ignore that for our purposes here. This suggests two different forms of ordered facts, something
like “course X is scheduled quarter Y” and “course X has prerequisite Z”. Develop a set (it could be a
subset of the full course list; just enough to test) of such facts, then implement simple rules that list
which courses are offered in fall and what the prerequisites are for each course. (Basically, these rules
are just outputting the knowledge base.)

2



4. Clearly, this is not enough information to plan a student’s course schedule because we have no informa-
tion about the student! We need to know what courses a student has already taken. Define an ordered
fact that contains a list of courses already taken. Using this fact, plus the facts previously defined,
write a rule that will list all classes that a student is able to take right now. Don’t worry about what
quarter it is.

3



5. These ordered facts will quickly get cumbersome, if they haven’t already. Let’s define some unordered
facts:

(deftemplate course (slot name)
(slot quarter)
(multislot prerequisites))

(deftemplate quarter (slot name) (multislot courses))
(deftemplate student (slot name) (multislot courses))

In these cases, the course fact contains schedule and prerequisite information for a course, the quarter
fact contains the list of courses scheduled for the student in a particular quarter, and the student fact
contains information about a student. Implement these three deftemplates, with documentation
strings, and use a deffacts construct to encode the actual course information for this year. Re-
implement the preceding rule using these new facts.

4



Rules Now we are ready to start writing rules. As our work progresses, what we will find is that we need
to either add more information to our existing facts or additional facts. That is OK; at each point in the
development process, we will have a partially working expert system and we will generally find that each
modification to our knowledge base will be an addition to it, rather than a re-implementation.

1. Let’s start out with the set of facts you have from the last step of the previous section. Assume you
will use a greedy algorithm to plan the schedule for the year, and (for the moment) that we aren’t
worrying about time conflicts. What information do you need to plan a quarter’s schedule? Do you
have enough information to do that? How do you know that you’re done with planning the quarter?
How can you move on to the next quarter?

5



2. At this point, you’ve likely identified that you need more facts. For one thing, you need to know
how many courses a student should schedule each quarter. We’ll do that by stating the number of
credits desired for each quarter, plus including the number of credits for each course. That takes care
of one part of the problem. The other part is keeping track of the state of the problem solution. For
that we need to know the current quarter and the remaining credits to schedule. Let’s make these
separate, ordered facts. Why do it this way? Well, it’s simple, and these facts, representing solution
state information, will be used primarily by reasoning control rules: a separate set of rules that have
as their purpose controlling when the other rules can be activated (reasoning phases).

3. Write a set of rules that will schedule a single quarter. Besides the course, quarter, and student specific
information, plus the remaining credits to schedule, your rules should just use the current quarter name
(without changing it). Initialize the current quarter to Fall and the credits to 15. Test your rules
with a variety of quarter names, initial credits to schedule, and set of courses the student has already
taken.

6



4. Now that you can schedule a single quarter reliably, consider the rules that start the whole process,
detect when a quarter is done, advance reasoning to the next quarter, and detect when the scheduling
is complete and output the final result. To do this, answer the following questions: How do I know
what the quarter names are, and in what sequence they are planned? How do I know when a quarter’s
schedule is done? What do I need to do when one quarter is ended and I need to start on the next?
Test your resultant program thoroughly.

7



5. For a program extension, consider how you might prevent scheduling conflicts. What additional infor-
mation do you need to add to the course fact? How do you need to modify the reasoning process to
prevent time conflicts? Could you do this by adding rules and more steps to the reasoning process, or
do you need to modify many rules substantially?

6. Is this all that seems practical to do, or do you think you could push this project further? Could you
incorporate degree planning? Heuristics gleaned from the CSS advisors regarding which courses to
take first? Do you think it might be feasible to create an “online advisor” that could help students
think about what courses to take each year? What sort of capabilities would such a system need? How
could it be designed so that students understand its limitations? Do you think it could be made useful
by prospective students thinking about coming to UWB?

8


