1
25

A CLIENT-SERVER BASED SIMULATOR

FOR INTELLIGENT AGENT DESIGN

Kruti Mehta

The University Of Texas At Arlington

Master’s Project Committee

Dr. Lawrence Holder

Dr. Diane Cook

Dr. Ramesh Yerraballi

TABLE OF CONTENTS

4INTRODUCTION

OVERVIEW
4
Rational Agents
4
Description of the Wumpus World
4
REQUIREMENTS
7
RELATED WORK
8
DESIGN OVERVIEW
9
CONCLUSIONS
15
FUTURE WORK
16
REFERENCES
17
APPENDIX A – USER’S MANUAL
18
USING THE WUMPUS WORLD SIMULATOR
19
Overview of the Working of the Simulator
19
How to start up the Server
20
How to start up the Client
26
Command Line Options
26
Guidelines on Programming Intelligent Agents on the Client.
27
APPENDIX B – DOCUMENTATION
28

TABLE OF FIGURES

11Figure 1:Overview of the World Package

Figure 2: Detailed view of the World Package
12
Figure 3: TransferPercept Class of the Percept Package
13
Figure 4: Detailed view of the Client Package
14
Figure 5: Snapshot of Server-side GUI
22
Figure 6: Snapshot of Client-side GUI
24

INTRODUCTION

This document primarily describes the Client-Server Based Simulator for Intelligent Agent Design. It describes the rationale behind its development, its construction and design choices and also usage scenarios for which the Simulator would be a helpful tool.

OVERVIEW

Rational Agents

The basis for the design of rational agents used in this project follows the scheme detailed by Stuart Russell and Peter Norvig in chapter 2 of [Russ95]. Rational agents operate by receiving a percept, which is a set of sensory information that the agent is able to detect about its environment and current situation. A percept represents the explicit values of external sensors, and therefore does not necessarily provide knowledge of agents’ surroundings in a form or to the extent that an agent would like. The rational agent must deduce any facts about the reality of its environment that it can form from the percept that it is given and must then decide on an action to take. As the agent perceives more and more about its environment, it can come to understand its surroundings more completely, and therefore be able to make wise choices on actions to perform.

Agents often will be given a chance to experience a sequence of percepts more than once. This allows the agent to learn about the environment that it is operating in. Each time the sequence is repeated, the agent can move toward its goal more quickly, safely, and efficiently.

Description of the Wumpus World

The description of the Wumpus world that follows is based mainly on the description given in[Russ95, pp. 153-157]. However, a few additional constraints are warranted by the fact that there may be multiple players occupying the world simultaneously, and that the world may contain obstacles. Those additional constraints are also mentioned below.

The Wumpus’ cave is a square grid. Walls line the edges of the grid. The grid may contain wumpii, pits, gold pieces, and obstacles.

The player may move only vertically and horizontally in the direction in which he faces. The player begins the game in the lower left-hand corner of the grid, facing right, and has a single arrow.

The Wumpus is a fierce creature, capable of killing the player instantly. If the player steps into a square containing a Wumpus, he dies immediately. The Wumpus has a foul odor that permeates not only in the location of the Wumpus, but also in each of its four surrounding squares.

If a player walks into a pit, he dies instantly. There is constant air movement around the pit, and a breeze can be sensed in each of its 4 surrounding squares.

Gold bars are quite valuable. They give out a glitter which can be sensed by the agent when he is in the same location as the bar.

Obstacles are scattered all over the world. Nothing can occupy the space which is occupied by an obstacle.

At the start of each turn, each player can perceive his own surroundings. He has the potential of sensing any of 5 basic percepts, and 2 extended percepts. A stench indicates that a Wumpus is in one or more of the four squares adjacent to the player’s current location. A breeze indicates that a pit is in one or more of the squares adjacent to the player’s current location. A glitter indicates that a gold bar is at the player’s current location. A bump is sensed when the player attempts to move forward, indicating that the player has attempted to move beyond the boundaries of the grid, or is attempting to move into a location with an obstacle. The player may at any time shoot an arrow along the line it is currently facing. If the arrow hits a Wumpus, the player will sense a scream indicating that the Wumpus has been shot dead.

One extended percept is a Natural Language Hint: an English sentence that gives some kind of information about the Wumpus World. Statements might indicate that a particular percept would be sensed at a certain grid location. Or hints might be more informative, indicating the exact position of some object or some other player in the grid. Grid Locations mentioned in the hint can either be absolute references, or relative to the player’s current location and orientation.

The other extended percept is a color image, showing the contents of the square just ahead of the player along his/her current orientation. The overall image is a square image in the ASCII PPM format.

The player may have the following orientations: RIGHT, LEFT, UP and DOWN. The player may perform any of the following actions: TURN_LEFT, TURN_RIGHT, GRAB(gold pieces), SHOOT, CLIMB(out of the cave), and SIT(stay as is). Going forward might result in a bump percept if the player runs into the grid boundary or an obstacle. Grabbing gold only succeeds if there is gold present. Shooting the arrow might result in a scream percept if the arrow does in fact hit a Wumpus. A player can only Climb out of a cave from the start square location.

The player receives a score of –1 for each move taken. Gold bars are worth 1000 points, but only if the player successfully climbs out of the cave carrying them. If the player dies, he loses 1000 points.

The player may have one of three states: ALIVE, DEAD or VICTORIOUS. ALIVE indicates that the player is alive and in the cave. DEAD means the player is dead in the cave. VICTORIOUS means the player successfully climbed out of the cave.

Since there may be more than one player in the grid, the players are given one minute to respond with an action. If the player does not come back with an action, a NO_OP is assumed, and the player loses 1 point, and is sent a new percept. The actions are collected from the players, and the action of the agent with the most priority is executed first. The priorities of players are established by the order in which the clients connected with the server.

The simulation may be set up for multiple trials. Each trial is over when all the agents in the grid are either dead or victorious, or have been in the game for more than 1000 steps, where a new step is said to start each time the players’ percepts are sent to them.

REQUIREMENTS

This simulator was primarily designed to provide a simple interface for intelligent agent design. The main requirement was that it support multiple agents in the wumpus world, with the number of agents specified at the start of simulation. Also, each agent should be allowed to have his own separate logic. The simulation should have client-server architecture so as to completely separate the simulation code from the agent design. The simulator should be designed entirely using an object-oriented design, and should support various platforms.

The simulation should conduct the Wumpus World game according to the rules specified above. Anyone trying to build and evaluate a rational agent should easily be able to write their code to communicate with the simulator.

The simulation should add the concept of an obstacle to the wumpus world so as to make the world as irregular as desired, and should support the extended percepts of natural-language hints and image hints. The simulation should support color images in ASCII PPM format for vision hints.

The simulation should be designed so as to resolve conflicts that could arise due to the presence of multiple agents in the Wumpus World.

RELATED WORK

Wumpus world simulators [BRESN][DAR99][TRE97] are available on the Internet. These are games that allow one to interactively play the game on the Internet. They give the percepts to the user who is a player, and the player can enter actions that are carried out by the simulator. The simulations are very limited in scope, and their GUI is almost nonexistent, since only fields to enter the action are available. [DAR99] [HAR95] also change the semantics of the Wumpus World in different ways. [DAR99] changes the characters and rules of the game, and [HAR95] changes the wumpus world from a square grid to interconnected bubbles that form a labyrinth.

[SCH97] is a site that presents animated JAVA applets that demonstrate the behaviour of simple, classical algorithms for intelligent agent design. The world that they assume may also contain obstacles. Their code, however, does not provide a simple interface for writing ones own agents. It is extremely difficult to modify their code to accommodate any new agents. Also, none of the game simulators mentioned so far provide extended percepts that might facilitate the development of natural-language processing agents and vision-based agents.

Robert Duff [DUF97] has built a wumpus world simulator that also provides an interface to implement agents. It assumes that only one agent will occupy the wumpus world at any time. Also, the world does not have any obstacles in it. This makes the determination of world boundaries very easy for any agent navigating it.

DESIGN OVERVIEW

The motivating factors for building the simulator were a need to provide:

· User-friendly design

· Flexibility

· Portability

· Graphical User Interface

· Client-Server Architecture

For providing flexibility in the simulator and to allow for the addition of new features in the future, an object-oriented design was necessary. Therefore, considering present-day technology, and the trend of new AI research following the object-oriented path, the choice for languages was limited to C++ and Java. Between these two, Java has the following advantages:

1. Java is very portable.

2. It has wide support for developing complex Graphical User Interface. If Visual C++ or Visual Basic were to be used for GUI and simulator development, the simulator would be limited to work on Windows 95/NT only.

3. Support for the transfer of entire objects between the client and the server using Object Serialization. Object Serialization allows the client and server to serialize and send objects to the other side, and reconstruct the original objects from the received serialized objects. With C++ and socket communication, one has to send each item individually over to the other side.

4. Java has many in-built classes that allow one to store and easily manipulate different types of objects.

Due to all these factors, the simulator is built entirely using Java 1.2.
The simulator consists of five Java Packages:

Action

Client

Input

Percept

World

The Action package is used primarily so that both the client and the server have a common interpretation of the valid actions for the agent.

The Client package contains all the classes that are necessary for the functioning of the agent and for communication with the server.

The Input package contains classes that are useful for the most frequent I/O operations for both the client and the server.

The Percept package contains the class that is used to pass the percepts between the clients and server.

The World package contains the classes that form the heart of the simulation. The classes contained herein maintain the whole game, from configuration to the end of all trials.

Thus, for proper functioning of the simulator, the packages required by the server would be:

World

Input

Percept

Action

And the packages required by the client would be:

Client

Input

Percept

Action

The following figures and discussion give a high-level overview of the design of the simulator and also the rationale behind the design. The figures use OMT(Object Modeling Technique) notation. Appendix B gives a low-level description of the packages and the classes contained therein.

Figure 1. shows a high level description of the World package. Note the hierarchy of the different kinds of objects present in the world. This hierarchy makes it possible to add other kinds of objects into the world easily. The classes GridObjectType, Direction, ActorState and WumpusMode are used to define constants used mainly by the classes that they are attached to.

Class GameServer is the class that coordinates between Environment, Percept and ScoreKeeper Classes and run the Simulation. WorldApplication Class is used mainly to start and initialize various components of the simulation. This becomes clearer when one sees the detailed diagram of the World package in Figure 2.

Figure 3. shows the Percept package. This has the TransferPercept Class that is used to transfer the data from the server to the clients. The clients can use the methods provided with the class to access normal and extended percepts, number of arrows, number of gold pieces, status, score and the last action executed by the server for that client.

Figure 4. shows the Client package. The Communicator class has the methods necessary for communication with the server. The GameClient is the client-side equivalent of GameServer, coordinating the Communicator and Player. The Player class contains the process() method that is to be implemented by anyone building intelligent agents. The PerceptKeeper class keeps checking the client-server connection for the availability of percepts, and if there are any, reads them and keeps them. Any class of the Client package can access the data-structure in the PerceptKeeper class.

[image: image12.png][Wumpus World Simulator Game Server

Figure 1:Overview of the World Package

[image: image13.wmf]Gold

Obstacle

Pit

Agent

WorldApplication

ScoreKeeper

WorldObject

GameServer

Environment

size

gridImage

getGridImage()

getObjectAtLocation(

GridPoint

gp)

getSize()

isDeadly(

GridPoint

gp)

isGoldAt(

GridPoint

gp)

isWumpusAt(

GridPoint

gp)

isPitAt(

GridPoint

gp)

isObstacleAt(

GridPoint

gp)

isPitNear(

GridPoint

gp)

isWumpusNear(

GridPoint

gp)

isValid(

GridPoint

gp)

readWorld()

setWumpusTargets()

shootAtWumpus()

processWumpii()

printEnvironment()

GridObject

objectType

location

origLocation

getObjectType()

getLocation()

setLocation()

getOrigLocation()

opname()

GridObjectTypes

ActorState

Actor

actorId

actorState

getActorId()

getActorState()

setActorState()

Wumpus

WumpusMode

MovingObject

orientation

origOrientation

getOrientation()

getOrigOrientation()

setOrientation()

Directions

Percept

Figure 2: Detailed view of the World Package

[image: image14.png][Percepts & Status for AGENT: 0

[_[OIx]

PERCEPT INFORMATION

Stench: [fase Breeze: [tue
oiiter. [faise Bump: [fase
Scream: [fase

NATURAL LANGUAGE HINT

Hint: [a stench s in square 2, 1)

STATUS INFORMATION
Lastction: [TURN_LEFT Agent state
score: Arrows:

Gold Pieces:

Figure 3: TransferPercept Class of the Percept Package

[image: image15.png][Wumpus World Simulator Game Server

Figure 4: Detailed view of the Client Package

CONCLUSIONS

We developed a client-server based wumpus-world simulator for intelligent agent design. The simulator provides a user-friendly framework for building and evaluating intelligent agents. The main traits separating this simulator from all the others are as follows:

· Provides a framework to allow multiple agents simultaneously in the wumpus world.

· Different agents can have different logic due to the client-server architecture.

· It is portable.

· User-friendly client and server side GUI.

· Natural language hints to allow incorporation of natural language based agents.

· Full color image hints to allow for vision-based agents.

The simulator was developed entirely in Java 1.2, using Borland’s JBuilder 3 as an IDE(Integrated Development Environment). Using JBuilder 3 greatly reduced the development time on the project.

Development of this simulator called a great deal of object-oriented design and increased my knowledge of the Java language tremendously, since it required the knowledge of varied concepts, ranging from programming logic, to developing GUI’s, to Object Serialization, and image processing in Java. Image processing was necessary, since Java does not support PPM image format.

One useful outcome of using Java to develop this simulator was that documentation for the project could be generated using JavaDoc Utility that is a part of the Java Programming Language. Thus, the code and documentation are integrated, and anyone with the code can generate the documentation in the form of HTML files.

FUTURE WORK

The simulator, with all its functionality, is by no means a complete package that will allow users to test AI algorithms in all possible areas. A few suggested enhancements to the simulator are listed below:

1. An enhancement that would allow users to choose between two modes of operation:

a. TimeOut Mode

b. Continuous Mode

In the TimeOut Mode, the simulator would function as it does at present, with the server sending out percepts to the client and then giving them a minute to think before collecting the actions, and then assigning a default action to the client that does not respond. The actions are executed in the order of their priorities that are assigned on the basis of the time that they connected to the server. One problem with this approach is that even if an agent returned his action before the others his action would probably be executed last if he connected last to the server. This gives an unfair advantage to the clients who connected first. To avoid this, in the Continuous Mode, the actions of the clients would be executed in the order in which they responded, after all the clients have returned with their actions. A configurable upper limit can be imposed on the maximum time that a client can take to return with an action after the percepts have been sent out. This would be necessary in the case that a network problem has occurred between the server and client.

2. Allowing rotation, skewing and enlargement/shrinking of PPM images that are part of the percepts so that the task of image processing may be made more realistic for the agent.

REFERENCES

[BRESN]

http://scv.bu.edu/htbin/wcl, Glenn Bresnahan,

[DAR99]

http://gpf-comics.com/games/wumpus/, Jefferey T. Darlington,1999.

[DUF97]

Egos: An environment for Generalized Object-Oriented Simulation, Robert Duff, 1997.

[HAR95]

http://www.cc.gatech.edu/gvu/people/Phd/Reid.Harmon/htw/, Reid Harmon, 1995.

[RUS95]

Artificial Intelligence- A modern Approach, Stuart Russel, Peter Norvig, Prentice Hall, 1995

[SCH97]

http://www.kr.tuwein.ac.at/students/prak_wumpusjava/simulator/Welcome.html,Christian Schwaiger, Jurgen Konigstatter, Roman Valehrach, Tope Aloba, 1997.

[TRE97]

http://www.fullfeed.com/~mtrent/cgi/wump/login.html, Michael Trent, 1997.

APPENDIX A – USER’S MANUAL

USING THE WUMPUS WORLD SIMULATOR

This section will guide the user on the usage of the Wumpus World Simulator. It explains the working of the simulator in two sections:

I. Overview of the Working of the Simulator

II. How to start up the Server

III. How to start up the Client

IV. Guidelines on Programming Intelligent Agents on the Client.

I. Overview of the Working of the Simulator

The simulator works in the following manner:

1. The server is started up.

2. Server waits for a specified number of clients to connect to it.

3. The clients connect to the server.

4. The server assigns priority to each agent depending on their time of connection.

5. The server then starts the first trial.

6. Server sends out an Initial Percept to each client.

7. Server waits for the clients to respond within a certain time limit.

8. Server carries out the actions specified by each client.

9. If a client specifies no action, the server carries out a default action (SIT) for that client.

A. If the agent dies or victoriously comes out of the cave or the game has ended, else it sends a final percept for that client. If the trials have not ended, it starts the next trial, and repeats from step 6. If the trials have ended, then it calculates the statistics for each agent.

B. Else it sends out the next percept for the client, and repeats from

step 7.

Percepts

The server sends percepts to the client at each step in the form of TransferPercept objects. Each TransferPercept object received by the client contains information about the agents’ normal(stench, breeze, glitter, bump, scream) and extended (natural language hints, color image hints) percepts, the agents’ status, the agents score, the agents’ number of arrows and gold pieces and the last action executed for the agent. The last action taken reflects which action was taken by the server last. Apart from the normal actions(go_forward, turn_left, turn_right, grab, shoot, climb, sit), there are two special values: Start_Game and End_Game that reflect the start and end of a game.

Whenever we refer to an Initial Percept or a Final Percept, we refer to the percept that has the last action taken field set to “Start_Game” and “End_Game” respectively.

II. How to start up the Server

Command Line Options

The server can be run from the command-line using the following command:

~>java world.WorldApplication –[options]

The command-line options available to the user are:

-s <size>
Sets the size of the world, from 4x4 to 10x10. The default world
size is 4x4. If only this option is used, a random world of size x size is generated with a random seed. The world generated is stored in a file called “randomworld”. If neither this option, nor the –f option below is given, a default wumpus world is used. The default wumpus world is shown in Figure 5.

-f <file>
Read the world from file. The default world is in file “world.txt”

-t <trials>
Set the number of game trials to be played. Performance statistics are collected and displayed. The default is one trial.

-r <seed>
Set the random number generator seed. If only this option is used, a random world of size 4x4 is generated. To specify another size, use the ‘-s’ option. The world is stored in a file called “randomworld”.

-c <clients>
Specifies the number of clients(and therefore agents)
 that will be playing the games. The default is one client.

-w <waitTime>
Specifies the time in milliseconds that the server will wait to collect actions from the clients after sending their respective percepts. The default is one minute.

-a <portnum>
Specifies the port on which the server should run. The

default is 10000.

Description of world Files

A wumpus world may be described in a file that can be read by the simulator. The formatting of the files is described here.

The first line of the file defines the size of the world. Each subsequent line defines an object, its location and any specific details about it. An example is shown below:

6

g x y

w x y sit

o x y

p x y

Here, g = gold, w = wumpus, o = obstacle and p = pit. The size of the world is 6x6. The x and y in each line specify a grid location for the object preceding them.

The kinds of objects that can be specified are:

Gold

Wumpus

Obstacle

Pit
The objects may be located in the same grid location. However, no other object may occupy the same space as an obstacle.

For a wumpus, there should always be an additional parameter specifying its movement mode:

stay

spin

random

walk

goto_gold

goto_pit
In the stay mode, the wumpus does not move at all from its position. In the spin mode, it keeps spinning clockwise. In the random mode, at every step in the simulator, it chooses an action at random and executes it. In the walk mode, the wumpus keeps moving towards an obstacle or a wall till it feels a bump and then it turns left and repeats the same. In the goto_gold mode, the wumpus chooses a location with a gold piece and keeps moving towards that location. In the goto-pit mode, the wumpus moves steadily towards a pit and then sits there when it reaches the pit.

Graphical User Interface

Upon starting the simulator, a window pops up on the server side. After this, the server waits for the specified number of clients to connect to it. Once the proper number of clients have connected to it, the Start button on the server side has to be pressed to start the simulator. The following figure shows a snapshot of the Graphical User Interface on the server side when the simulator is started up with two clients.

[image: image16.emf]Gold

Obstacle

Pit

Agent

WorldApplication

Percept

ScoreKeeper

WorldObject

GameServer

Environment

GridObject

GridObjectTypes

ActorState

Actor

Wumpus

WumpusMode

MovingObject

Directions

Gold Obstacle Pit

Agent

WorldApplication

Percept ScoreKeeper

WorldObject

GameServer

Environment

GridObject GridObjectTypes

ActorState Actor

Wumpus WumpusMode

MovingObject Directions

[image: image1.png]

 = Agent (Facing Right)

[image: image2.png]

 = Agent (Facing Left)

[image: image3.png]

 = Agent (Facing Up)

[image: image4.png]

 = Agent (Facing Down)

[image: image5.png]

 = Wumpus (Facing Down)

[image: image6.png]

 = Wumpus(Facing Up)

[image: image7.png]

 = Wumpus(Facing Left)

[image: image8.png]

 = Wumpus(Facing Right)

[image: image9.png]

 = Pit

[image: image10.png]

= Gold

[image: image11.png]

 = Obstacle

Figure 5: Snapshot of Server-side GUI

There is no upper bound on the number of agents supported by the simulator. To distinguish among agents, each agent is displayed using four GIF images, one for each orientation. The naming convention for the agents is:

Agent<agent-number>Left.gif

Agent<agent-number>Right.gif

Agent<agent-number>Up.gif

Agent<agent-number>Down.gif

e.g. Agent3Left.gif represents agent 3 facing Left. Images for five agents are provided with the simulator. If more agents are present in the world, images for those should be added to the “wworld/Images” directory. If they are not provided, the default images for those would be the images representing Agent 0(shown above).

[image: image17.png]

[image: image18.emf]TransferPercept

stench : boolean

breeze : boolean

glitter : boolean

bump : boolean

scream : boolean

actionTaken : int

score : int

numArrow : int

numGold : int

hint : string

image : int[][][]

status : int

getStench()

getNumGold()

getGlitter()

getBump()

getScream()

getBreeze()

getNumGold()

getHint()

getImage()

getScore()

getStatus()

getActionTaken()

setHint(String hint)

setActionTaken(int)

setImageHint(int[][][])

setScore(int)

setStatus(int)

setPercept(boolean,boolean,boolean,boolean,boolean)

TransferPercept

stench : boolean

breeze : boolean

glitter : boolean

bump : boolean

scream : boolean

actionTaken : int

score : int

numArrow : int

numGold : int

hint : string

image : int[][][]

status : int

getStench()

getNumGold()

getGlitter()

getBump()

getScream()

getBreeze()

getNumGold()

getHint()

getImage()

getScore()

getStatus()

getActionTaken()

setHint(String hint)

setActionTaken(int)

setImageHint(int[][][])

setScore(int)

setStatus(int)

setPercept(boolean,boolean,boolean,boolean,boolean)

Figure 6: Snapshot of Client-side GUI

III. How to start up the Client

Command Line Options

The client is started up using the following command:

~> java client.GameClient –h <server-name> -p <port-number>

<server-name> is the address of the machine that the server is running on. It defaults to “localhost” .

<port-number> is the port number on which the server is running.Default is 10000.

IV. Guidelines on Programming Intelligent Agents on the Client.

To build and evaluate intelligent agents using the Simulator, one has to implement the process function in Player class of the Client Package. The process function has an input parameter of TransferPercept, and returns an integer representing the action to be executed by the agent. The simulator automatically sends the action returned by the process method to the server.

Here are a few pointers that might be helpful during agent design:

· Methods available to access information in the TransferPercept object (tp):

· getBreeze()

· getStench()

· getBump()

· getGlitter()

· getScream()

These return boolean values indicating whether or not the agent feels the corresponding normal percepts.

· getHint()

This method returns a string representing the natural language hint.

· getImage()

This returns a 3-D array of pixels representing the color image that the agent is seeing.

Array[i][j][0] represents the red component of the pixel at i ,j .

Array[i][j][1] represents the green component of the pixel at i ,j .

Array[i][j][2] represents the blue component of the pixel at i ,j .

· Method to return agent status and other information:

· getStatus()

· getNumArrow()

· getNumGold()

· getActionTaken()

APPENDIX B – DOCUMENTATION

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image19.emf]GameClient

main()

PerceptKeeper

perceptcomm : Communicator

vecPercepts : vector

Player

pipe : Communicator

id : int

Process(TransferPercept tp)

Communicator

createConnection()

getInputStream()

readInformation()

readIntFromStream()

writeInformation(Object)

GameClient

main()

PerceptKeeper

perceptcomm : Communicator

vecPercepts : vector

Player

pipe : Communicator

id : int

Process(TransferPercept tp)

Communicator

createConnection()

getInputStream()

readInformation()

readIntFromStream()

writeInformation(Object)

[image: image20.wmf]Gold

Obstacle

Pit

Agent

WorldApplication

ScoreKeeper

WorldObject

GameServer

Environment

size

gridImage

getGridImage()

getObjectAtLocation(

GridPoint

gp)

getSize()

isDeadly(

GridPoint

gp)

isGoldAt(

GridPoint

gp)

isWumpusAt(

GridPoint

gp)

isPitAt(

GridPoint

gp)

isObstacleAt(

GridPoint

gp)

isPitNear(

GridPoint

gp)

isWumpusNear(

GridPoint

gp)

isValid(

GridPoint

gp)

readWorld()

setWumpusTargets()

shootAtWumpus()

processWumpii()

printEnvironment()

GridObject

objectType

location

origLocation

getObjectType()

getLocation()

setLocation()

getOrigLocation()

opname()

GridObjectTypes

ActorState

Actor

actorId

actorState

getActorId()

getActorState()

setActorState()

Wumpus

WumpusMode

MovingObject

orientation

origOrientation

getOrientation()

getOrigOrientation()

setOrientation()

Directions

Percept

_1005209563.doc
[image: image1.png][Wumpus World Simulator Game Server

_1005226015.doc
[image: image1.png]

Gold

Obstacle

Pit

Agent

WorldApplication

ScoreKeeper

WorldObject

GameServer

Environment

size

gridImage

getGridImage()

getObjectAtLocation(GridPoint gp)

getSize()

isDeadly(GridPoint gp)

isGoldAt(GridPoint gp)

isWumpusAt(GridPoint gp)

isPitAt(GridPoint gp)

isObstacleAt(GridPoint gp)

isPitNear(GridPoint gp)

isWumpusNear(GridPoint gp)

isValid(GridPoint gp)

readWorld()

setWumpusTargets()

shootAtWumpus()

processWumpii()

printEnvironment()

GridObject

objectType

location

origLocation

getObjectType()

getLocation()

setLocation()

getOrigLocation()

opname()

GridObjectTypes

ActorState

Actor

actorId

actorState

getActorId()

getActorState()

setActorState()

Wumpus

WumpusMode

MovingObject

orientation

origOrientation

getOrientation()

getOrigOrientation()

setOrientation()

Directions

Percept

