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Distribution in 1D projection

e Consider a scalar projection

fix — wo+w'x

e We can study how well the projected values corresponding to different classes
are separated

— This is a function of w; some projections may be better than others.
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Distribution in 1D projection

wy + wlx
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e Consider a scalar projection

fix — wo+wlx

e We can study how well the projected values corresponding to different classes
are separated

— This is a function of w; some projections may be better than others.
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Linear discriminant and dimensionality reduction

The discriminant function f(x:w) = wo + w' x reduces the dimension of
examples from d to 1; the components orthogonal to w become irrelevant.
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flx,w)=—1

flx,w) =0
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Projections and classification

What objecive are we optimizing the 1D projection for?
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Objective: class separation
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e We want to minimize “overlap” between projections of the two classes.

e One way to approach that: make the class projections a) compact, b) far apart.
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Objective: class separation
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e We want to minimize “overlap” between projections of the two classes.

e An obvious idea: maximize separation between the projected means
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Separation of the means

e N, examples of class +1, N_; examples of class —1.

e The empirical mean of each class:

1 1
myiq1 = — E X;. m_q1 = —
Ny | N_1

yi=-+1

e We can look for projection w such that

W = argmax WT(111+1 —m_q)
W
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Separation of the means: example

W = argmaxw’ (myj —m_)
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e Also want to make projection of each class “compact”...
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Fisher’s linear discriminant analysis

e Criterion to be maximized:

separation between projected means?

jFi‘.sh.er(“f) — ; . ;
| sum of projected within-class variances

T

2
e Numerator: between-class scatter (w! (my; —m_1))

e Denominator: within-class scatter w’ (N_1S_1 + N, 1S,1) w, where
1 1 T
S, = N E (x; —m,)(x; —m.)".
i¥e
Yi==¢

— The denominator is the sum of estimated 1D class covariances, after data are
projected to w, weighted by number of samples in each class.
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Fisher’'s LDA

2
(WT(mH - m—l])
wT (J'T\’T_IS_I -+ 4?\T_|_1S_|_1) W

-}Fz'shﬁ*r(‘v) —

e Best 1D projection: w = argmaxy, Jp;sper(W)

e Setting the derivative of .J w.r.t. w to zero, get solution:

1

w x (N_1S_1 +N41S41) (myp —m_q)

Notation: o means “proportional to", up to a constant factor.
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Example of applying Fisher’s LDA
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maximize separation of means
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maximize Fisher’s LDA criterion
— better class separation
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Using LDA for classification in one dimension

e Fisher’'s LDA gives an optimal choice of w, the vector for
projection down to one dimension.

e For classification, we still need to select a threshold to
compare projected values to. Two possibilities:

— No explicit probabilistic assumptions. Find threshold
which minimizes empirical classification error.

— Make assumptions about data distributions of the
classes, and derive theoretically optimal decision
boundary.

+ Usual choice for class distributions is multivariate Gaussian.
+ We also will need a bit of decision theory.
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Decision theory

To minimize classification error:

A C N At a given point x in feature space,
y =argmax p( | X) ~ choose as the predicted class the class
¢ that has the greatest probability at x.
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probability densities for classes C, and C,

Decision theory

X in feature space,

choose as the predicted class the class

that has the greatest probability at x.

p(Calz)
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~ At a given point
y=argmax p(C|x) = O
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MATLAB interlude

Classification via discriminant analysis,
using the classify() function.

Data for each class modeled as multivariate Gaussian.

matlab_demo_ 06.m

class = classify( sample, training, group, “type” )

\ [/

predicted test testdata  training data training model for class
labels labels covariances
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MATLAB classify() function

|
Models for class covariances
/
4
7/
/
“linear”: “diaglinear’:
all classes have same covariance matrix all classes have same diagonal covariance matrix
— linear decision boundary — linear decision boundary
“quadratic’: “diagquadratic’:
classes have different covariance matrices classes have different diagonal covariance matrices
— quadratic decision boundary — quadratic decision boundary
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MATLAB classify() function

Example with <quadratic> model of class covariances

sepal Width

Classification with Fisher Training Data

V¥ Fisher versicolor
& Figher virginica
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