Classification Nearest Neighbor

Instance based classifiers

Instance based classifiers

• Examples:

- Rote learner
 - memorize entire training data
 - perform classification only if attributes of test sample match one of the training samples exactly
- Nearest neighbor
 - ◆ use k "closest" samples (nearest neighbors) to perform classification

Nearest neighbor classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest neighbor classifiers

Requires three inputs:

- The set of stored samples
- 2. Distance metric to compute distance between samples
- 3. The value of *k*, the number of nearest neighbors to retrieve

Nearest neighbor classifiers

To classify unknown record:

- 1. Compute distance to other training records
- 2. Identify *k* nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of nearest neighbor

k-nearest neighbors of a sample x are datapoints that have the *k* smallest distances to x

1-nearest neighbor

Voronoi diagram

- Compute distance between two points:
 - Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the k-nearest neighbors
 - Weight the votes according to distance
 - example: weight factor $w = 1 / d^2$

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5 m to 1.8 m
 - weight of a person may vary from 90 lb to 300 lb
 - income of a person may vary from \$10K to \$1M

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

one solution: normalize the vectors to unit length

- k-Nearest neighbor classifier is a lazy learner
 - Does not build model explicitly.
 - Unlike eager learners such as decision tree induction and rule-based systems.
 - Classifying unknown samples is relatively expensive.
- k-Nearest neighbor classifier is a local model, vs. global model of linear classifiers.

Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning System (Cost & Salzberg)
 - Works with both continuous and nominal features
 - ◆For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
 - Each sample is assigned a weight factor
 - Number of nearest neighbor, k = 1

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Distance between nominal attribute values:

d(Single, Married)

$$= |2/4 - 0/4| + |2/4 - 4/4| = 1$$

d(Single, Divorced)

$$= |2/4 - 1/2| + |2/4 - 1/2| = 0$$

d(Married, Divorced)

$$= |0/4 - 1/2| + |4/4 - 1/2| = 1$$

d(Refund=Yes,Refund=No)

$$= |0/3 - 3/7| + |3/3 - 4/7| = 6/7$$

Class		tus	
Class	Single	Married	Divorced
Yes	2	0	1
No	2	4	1

Class	Refund		
Class	Yes	No	
Yes	0	3	
No	3	4	

$$d(V_1, V_2) = \sum_{i} \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right|$$

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
X	Yes	Single	125K	No
Υ	No	Married	100K	No

Distance between record X and record Y:

$$\Delta(X,Y) = w_X w_Y \sum_{i=1}^{d} d(X_i, Y_i)^2$$

where:

 $w_X = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}}$

 $W_X \cong 1$ if X makes accurate prediction most of the time

 $w_X > 1$ if X is not reliable for making predictions

Decision boundaries in global vs. local models

linear regression

15-nearest neighbor

1-nearest neighbor

- global
- stable
- can be inaccurate

- local
- accurate
- unstable

What ultimately matters: **GENERALIZATION**