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Loss function

Suppose target labels come from set Y
– Binary classification: Y = { 0, 1 }y { , }
– Regression: Y = ℜ (real numbers)

A loss function maps decisions to costs:
– defines the penalty for predicting    when the 

true value is    .
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Standard choice for regression:
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Least squares linear fit to data

Most popular estimation method is least squares:
– Determine linear coefficients α, β that minimize sum 

of squared loss (SSL).
– Use standard (multivariate) differential calculus:

diff ti t SSL ith t t βdifferentiate SSL with respect to α, β
find zeros of each partial differential equation
solve for α, β
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Least squares linear fit to data

Multiple dimensions
– To simplify notation and derivation, change α to β0, p y , g β0,

and add a new feature x0 = 1 to feature vector x:
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– Calculate SSL and determine β:
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Least squares linear fit to data
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Least squares linear fit to data
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Extending application of linear regression

The inputs X for linear regression can be:
– Original quantitative inputsg q p
– Transformation of quantitative inputs, e.g. log, exp, 

square root, square, etc.
– Polynomial transformation

example:  y = β0 + β1⋅x + β2⋅x2 + β3⋅x3

Basis expansions– Basis expansions
– Dummy coding of categorical inputs
– Interactions between variablesInteractions between variables

example: x3 = x1 ⋅ x2

This allows use of linear regression techniques to fit much 
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Example of fitting polynomial curve with linear model
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Prostate cancer dataset

97 samples, partitioned into:
– 67 training samplesg p
– 30 test samples

Eight predictors (features):
– 6 continuous (4 log transforms)
– 1 binary
– 1 ordinal

Continuous outcome variable:
l ( t t ifi ti l l )– lpsa: log( prostate specific antigen level )
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Correlations of predictors in prostate cancer dataset
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Fit of linear model to prostate cancer dataset
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Regularization

Complex models (lots of parameters) often prone to overfitting.
Overfitting can be reduced by imposing a constraint on the overall 

it d f th tmagnitude of the parameters.
Two common types of regularization in linear regression:

– L2 regularization (a.k.a. ridge regression).  Find β which minimizes:2 g ( g g ) β
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λ is the regularization parameter: bigger λ imposes more constraint

j

– L1 regularization (a.k.a. lasso).  Find β which minimizes:
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Example of L2 regularization

L2 regularization 
shrinks coefficientsshrinks coefficients 
towards (but not to) 
zero, and towards 

each other.
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Example of L1 regularization

L1 regularization shrinks 
coefficients to zero at 

different rates; different 
values of λ give models 

ith diff t b t fwith different subsets of 
features. 
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Example of subset selection
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Comparison of various selection and shrinkage methods
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L1 regularization gives sparse models, L2 does not
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Other types of regression

In addition to linear regression, there are:
– many types of non-linear regression– many types of non-linear regression

decision trees
nearest neighbornearest neighbor
neural networks
support vector machinespp

– locally linear regression
– etc.etc.
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MATLAB interlude

matlab demo 07 mmatlab_demo_07.m

P t BPart B
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