Regression

Linear Regression

- We want to fit a linear function to an observed set of points $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we can use it to *predict* the y for new \mathbf{x} .
- Find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

- We want to fit a linear function to an observed set of points $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we can use it to *predict* the y for new \mathbf{x} .
- Find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

- We want to fit a linear function to an observed set of points $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we can use it to *predict* the y for new \mathbf{x} .
- Find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

- We want to fit a linear function to an observed set of points $X = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we can use it to *predict* the y for new \mathbf{x} .
- Find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

Linear functions

- General form: $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$
- 1D case $(\mathcal{X} = \mathbb{R})$: a line

• *Hyperplane* in general, *d*-D case.

Loss function

- Suppose target labels come from set Y
 - Binary classification: $Y = \{0, 1\}$
 - Regression: $Y = \Re$ (real numbers)
- A loss function maps decisions to costs:
 - $L(y, \hat{y})$ defines the penalty for predicting \hat{y} when the true value is y.
- Standard choice for classification: 0/1 loss (same as misclassification error) $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{otherwise} \end{cases}$
- Standard choice for regression: squared loss

$$L(y, \hat{y}) = (\hat{y} - y)^2$$

- Most popular estimation method is least squares:
 - Determine linear coefficients α , β that minimize sum of squared loss (SSL).
 - Use standard (multivariate) differential calculus:
 - differentiate SSL with respect to α , β
 - find zeros of each partial differential equation
 - solve for α , β
- One dimension:

 $SSL = \sum_{j=1}^{N} (y_j - (\alpha + \beta \cdot x_j))^2 \qquad N = \text{number of samples}$ $\beta = \frac{\text{cov}[x, y]}{\text{var}[x]} \qquad \alpha = \overline{y} - \beta \cdot \overline{x} \qquad x, y = \text{means of training } x, y$ $\hat{y}_t = \alpha + \beta \cdot x_t \qquad \text{for test sample } x_t$

- Multiple dimensions
 - To simplify notation and derivation, change α to β_0 , and add a new feature $x_0 = 1$ to feature vector **x**: $\hat{y} = \beta_0 \cdot 1 + \sum_{i=1}^d \beta_i \cdot x_i = \mathbf{\beta} \cdot \mathbf{x}$
 - Calculate SSL and determine β :

$$SSL = \sum_{j=1}^{N} (y_j - \sum_{i=0}^{d} \beta_i \cdot x_i)^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} \cdot (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

 $\mathbf{y} =$ vector of all training responses y_j

 $\mathbf{X} =$ matrix of all training samples \mathbf{x}_{i}

$$\boldsymbol{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$
$$\hat{y}_{t} = \boldsymbol{\beta} \cdot \mathbf{x}_{t}$$

for test sample \mathbf{x}_t

FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Introduction to Machine Learning

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

Extending application of linear regression

- The inputs **X** for linear regression can be:
 - Original quantitative inputs
 - Transformation of quantitative inputs, e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
 - Basis expansions
 - Dummy coding of categorical inputs
 - Interactions between variables

• example: $x_3 = x_1 \cdot x_2$

 This allows use of linear regression techniques to fit much more complicated non-linear datasets.

Example of fitting polynomial curve with linear model

Winter 2012

Prostate cancer dataset

- 97 samples, partitioned into:
 - 67 training samples
 - 30 test samples
- Eight predictors (features):
 - 6 continuous (4 log transforms)
 - 1 binary
 - 1 ordinal
- Continuous outcome variable:
 - lpsa: log(prostate specific antigen level)

Correlations of predictors in prostate cancer dataset

TABLE 3.1. Correlations of predictors in the prostate cancer data.

	lcavol	lweight	age	lbph	svi	lcp	gleason
lweight	0.300						
age	0.286	0.317					
lbph	0.063	0.437	0.287				
svi	0.593	0.181	0.129	-0.139			
lcp	0.692	0.157	0.173	-0.089	0.671		
gleason	0.426	0.024	0.366	0.033	0.307	0.476	
pgg45	0.483	0.074	0.276	-0.030	0.481	0.663	0.757

15

Fit of linear model to prostate cancer dataset

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the coefficient divided by its standard error (3.12). Roughly a Z score larger than two in absolute value is significantly nonzero at the p = 0.05 level.

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
lweight	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
gleason	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Regularization

- Complex models (lots of parameters) often prone to overfitting.
- Overfitting can be reduced by imposing a constraint on the overall magnitude of the parameters.
- Two common types of regularization in linear regression:
 - L_2 regularization (a.k.a. ridge regression). Find β which minimizes:

$$\sum_{j=1}^{N} (y_j - \sum_{i=0}^{d} \beta_i \cdot x_i)^2 + \lambda \sum_{i=1}^{d} \beta_i^2$$

 $\bullet \ \lambda$ is the regularization parameter: bigger λ imposes more constraint

- L_1 regularization (a.k.a. lasso). Find β which minimizes:

$$\sum_{j=1}^{N} (y_{j} - \sum_{i=0}^{d} \beta_{i} \cdot x_{i})^{2} + \lambda \sum_{i=1}^{d} |\beta_{i}|$$

Example of L₂ regularization

FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as the tuning parameter λ is varied. Coefficients are plotted versus df(λ), the effective degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by cross-validation.

L2 regularization shrinks coefficients towards (but not to) zero, and towards each other.

Coefficients

Example of L₁ regularization

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t/\sum_{1}^{p} |\hat{\beta}_{j}|$. A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 9; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed;

L1 regularization shrinks coefficients to zero at different rates; different values of λ give models with different subsets of features.

Coefficients

FIGURE 3.5. All possible subset models for the prostate cancer example. At each subset size is shown the residual sum-of-squares for each model of that size.

Comparison of various selection and shrinkage methods

FIGURE 3.7. Estimated prediction error curves and their standard errors for the various selection and shrinkage methods. Each curve is plotted as a func-

Introduction to Machine Learning

L_1 regularization gives sparse models, L_2 does not

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Other types of regression

- In addition to linear regression, there are:
 - many types of non-linear regression
 - decision trees
 - nearest neighbor
 - neural networks
 - support vector machines
 - locally linear regression
 - etc.

MATLAB interlude

matlab_demo_07.m

Part B