Regression
Linear Regression
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Linear fitting to data

e We want to fit a linear function to an observed set of points X = [xq...., XN
with associated labels Y = [y1,. .., Yn|.

— Once we fit the function, we can use it to predict the y for new x.

e Find the function that minimizes sum (or average) of square distances between
actual ys in the training set and predicted ones.

O least squares (LSQ)

-
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Linear functions

e General form: f(x:w) = wg+ wyry + ...+ wary

e 1D case (X =R): a line
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e Hyperplane in general, d-D case.
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Loss function
e Suppose target labels come from set Y
— Binary classification: Y ={0, 1}
— Regression: Y=9R (real numbers)
e A loss function maps decisions to costs:

— L(y,y) defines the penalty for predicting Y when the
true value is Y.

e Standard choice for classification:

0/1 loss (same as L (Y, §) = 0 ify=y
misclassification error) %7 1  otherwise

e Standard choice for regression: A e 2
squared loss L(y, ¥)=(y-y)
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Least squares linear fit to data

e Most popular estimation method is least squares:

— Determine linear coefficients «, B that minimize sum
of squared loss (SSL).
— Use standard (multivariate) differential calculus:
+ differentiate SSL with respect to «,
+ find zeros of each partial differential equation
# solve for «a, B

e One dimension:

N
SSL =) (y, —(a+B-X;))" N = number of samples
j=1
= covix,y] a=y—-[f-X X,y = means of training X, y
var[x]
V. =a+[-X for test sample x,
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Least squares linear fit to data
e Multiple dimensions

— To simplify notation and derivation, change « to £,
and add a new feature x, = 1 to feature vector x:

=l 1+ZIB X =p-x

— Calculate SSL and determine f:
N d
SSL=) (y;—2. B %) =(y-XB)" - (y—XB)
j=1 i=0
y = vector of all training responses y,
X = matrix of all training samples x;
— (XTX)_ley
=PB-x, for test sample x,
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Least squares linear fit to data

| |
v
FIGURE 3.1. Linear least squares fitting with
X € IR?. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .
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Least squares linear fit to data

-~

X1
FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y is orthogonally projected onto the hyperplane
spanned by the input vectors X1 and xa. The projection
Vv represents the vector of the least squares predictions
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Extending application of linear regression

e The inputs X for linear regression can be:

— Original quantitative inputs

— Transformation of guantitative inputs, e.g. log, exp,
square root, square, etc.

— Polynomial transformation
o example: y = S, + fi-X + X2 + [3-X3

— Basis expansions

— Dummy coding of categorical inputs

— Interactions between variables
& example: X3 =X, - X,

e This allows use of linear regression techniques to fit much
more complicated non-linear datasets.
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Example of fitting polynomial curve with linear model

0 I

M
y(x,w) = wo + w1 + wox® + ... +wyazM = E w;x?
=0
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Prostate cancer dataset

e 97 samples, partitioned into:

— 67 training samples
— 30 test samples

e Eight predictors (features):

— 6 continuous (4 log transforms)
— 1 binary
— 1 ordinal

e Continuous outcome variable:
— Ipsa: log( prostate specific antigen level )
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Correlations of predictors in prostate cancer dataset

I I
TABLE 3.1. Correlations of predictors in the prostate cancer data.
lcavol 1lweight age 1bph svi lcp gleason
lweight 0.300
age  0.286 0.317
lbph  0.063 0.437 0.287
svi 0.593 0.181 0.129 —-0.139
lcp  0.692 0.157 0.173 —0.089 0.671
gleason 0.426 0.024  0.366 0.033  0.307 0.476
peglb 0.483 0.074 0.276 —0.030 0.481 0.663 0.757
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Fit of linear model to prostate cancer dataset

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (3.12). Roughly a Z score larger than two
in absolute value is significantly nonzero at the p = 0.05 level.

Term  Coefficient Std. Error Z Score

Intercept 2.46 0.09 27.60
lcavol 0.68 0.13 5.37
lweight (.26 0.10 2.75
age —0.14 0.10 —1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lcp —0.29 0.15 —1.87
gleason —0.02 0.15 —0.15
pgg4s 0.27 0.15 1.74
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Regularization

e Complex models (lots of parameters) often prone to overfitting.

e Overfitting can be reduced by imposing a constraint on the overall
magnitude of the parameters.

e Two common types of regularization in linear regression:
— L, regularization (a.k.a. ridge regression). Find 8 which minimizes:

20 =2 B )+ AL B

+ A\ is the regularization parameter: bigger A imposes more constraint

— L, regularization (a.k.a. lasso). Find B which minimizes:
d

Z(yj =D Bx) +)Z’Z|/8i |

1=0
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Example of L, regularization

FIGURE 3.8. Profiles of ridge coefficients for the

prostate cancer example, as the tuning parameter \ is feavel
varied. Coefficients are plotted versus df(\), the ef-
fective degrees of freedom. A wvertical line is drawn at
df = 5.0, the value chosen by cross-validation.
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Example of L, regularization

FIGURE 3.10. Profiles of lasso coefficients, as the
tuning parameter t is varied. Coefficients are plot-
ted versus s = t/ > P |3;|. A wvertical line is drawn at
s = 0.36, the value chosen by cross-validation. Com-
pare Figure 3.8 on page 9; the lasso profiles hit zero,
while those for ridge do not. The profiles are piece-wise
linear, and so are computed only at the points displayed;
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Example of subset selection
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FIGURE 3.5. All possible subset models for the
prostate cancer example. At each subset size is shown
the residual sum-of-squares for each model of that size.
Jeff Howbert Introduction to Machine Learning Winter 2012 20




Comparison of various selection and shrinkage methods
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FIGURE 3.7. Estimated prediction error curves and
their standard errors for the wvarious selection and
shrinkage methods. Fach curve is plotted as a func-
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L, regularization gives sparse models, L, does not
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shoun are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |B1| + |32 <t and 57 + 33 < t2,
respectively, while the red ellipses are the contours of
the least squares error function.
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Other types of regression

e |n addition to linear regression, there are:

— many types of non-linear regression
# decision trees
¢ nearest neighbor
+ neural networks
¢ support vector machines
— locally linear regression

— etc.
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MATLAB interlude

matlab demo 07.m
Part B
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