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Clustering topics

Hierarchical clustering

Density-based clustering

Cluster validityy
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Proximity measures

Proximity is a generic term that refers to either similarity 
or dissimilarity.y
Similarity

– Numerical measure of how alike two data objects are.
– Measure is higher when objects are more alike.
– Often falls in the range [ 0, 1 ].

DissimilarityDissimilarity
– Numerical measure of how different two data objects are.
– Measure is lower when objects are more alike.
– Minimum dissimilarity often 0, upper limit varies.
– Distance sometimes used as a synonym, usually for specific 

classes of dissimilarities.
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Approaches to clustering

A clustering is a set of clusters

Important distinction between hierarchical and 
partitional clustering

P titi l d t i t di id d i t fi it– Partitional: data points divided into finite 
number of partitions (non-overlapping subsets)

each data point is assigned to exactly one subseteach data point is assigned to exactly one subset

– Hierarchical: data points placed into a set of 
nested clusters, organized into a hierarchicalnested clusters, organized into a hierarchical 
tree

tree expresses a continuum of similarities and 
l t i
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Hierarchical clustering 

Produces a set of nested clusters organized as a 
hierarchical treehierarchical tree
Can be visualized as a dendrogram
– A tree like diagram that records the sequenceA tree like diagram that records the sequence 

of merges or splits
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Microarray data analysis

experiment
dendrogram

gene
dendrogram

Jeff Howbert    Introduction to Machine Learning       Winter 2012               6

NIH Center for Information Technology



Melanoma gene expression profiles
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Univ. of Maryland, Human-Computer Interaction Lab



Genetic distance among wheat cultivars

Hierarchical clustering based on 13 quality traits of 75 
wheat landraces including seven wheat cultivars.
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Australian Society of Agronomy, The Regional Institute Ltd.



Circular cladogram
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Strengths of hierarchical clustering

Do not have to assume any particular number of 
clusters
– Any desired number of clusters can be 

obtained by ‘cutting’ the dendogram at the 
proper levelproper level

They may correspond to meaningful taxonomiesThey may correspond to meaningful taxonomies
– Example in biological sciences (e.g., animal 

kingdom phylogeny reconstruction )kingdom, phylogeny reconstruction, …)
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Notion of a cluster can be ambiguous

How many clusters? Six Clusters

Four ClustersTwo Clusters
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Hierarchical clustering

Two main types of hierarchical clustering
– Agglomerative:Agglomerative:  

Start with the points as individual clusters
At each step, merge the closest pair of clusters until only one 

l t ( k l t ) l ftcluster (or k clusters) left

– Divisive:  
Start with one, all-inclusive clusterStart with one, all inclusive cluster 
At each step, split a cluster until each cluster contains a point 

(or there are k clusters)

T diti l hi hi l l ith i itTraditional hierarchical algorithms use a proximity 
or distance matrix

Merge or split one cluster at a time
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Agglomerative clustering algorithm

More popular hierarchical clustering technique
Basic algorithm is straightforwardg g

1. Compute the proximity matrix
2. Let each data point be a cluster
3 Repeat3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

Key operation is the computation of proximities 
between cluster pairsbetween cluster pairs

– Different approaches to defining the distance between 
clusters distinguish the different algorithms
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Starting situation 

Start with clusters of individual points and a proximity 
matrix
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Intermediate situation

After some merging steps, we have some clusters. 
C2C1 C3 C4 C5
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C4

C3
C3

C5

C4

C1
proximity matrix

C2 C5
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Intermediate situation

We decide to merge the two closest clusters (C2 and C5)  
and update the proximity matrix. C2C1 C3 C4 C5
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After merging

The question is “How do we update the proximity matrix?” 
C2 
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? ? ? ?

?
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Defining inter-cluster similarity

p1

p1 p2 p3 p4 p5 . . .

similarity?
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.
MIN
MAX

.

.

MAX
Group average
Distance between centroids proximity matrix

Other methods driven by an objective 
function
– Ward’s method uses squared error

Jeff Howbert    Introduction to Machine Learning       Winter 2012               18

– Ward s method uses squared error
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Defining inter-cluster similarity
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Cluster similarity: MIN or single link 

Similarity of two clusters is based on the two 
most similar (closest) points in the differentmost similar (closest) points in the different 
clusters
– Determined by one pair of points, i.e., by one y p p , , y

link in the proximity graph.

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0 20 0 50 0 30 0 80 1 00
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Hierarchical clustering: MIN
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Strength of MIN

original points two clusters

• Can handle non-elliptical shapes
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Limitations of MIN

original points two clusters

• Sensitive to noise and outliers
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Cluster similarity: MAX or complete link

Similarity of two clusters is based on the two least 
similar (most distant) points in the differentsimilar (most distant) points in the different 
clusters
– Determined by one pair of points, i.e., by one y p p , , y

link in the proximity graph.
I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0 10 0 0 1 00 0 40 0 30I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0 20 0 50 0 30 0 80 1 00 1 2 3 4 5
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Hierarchical clustering: MAX
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Strength of MAX

original points two clusters

• Less susceptible to noise and outliers
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Limitations of MAX

original points two clusters

• Tends to break large clusters

g p
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• Biased towards globular clusters



Cluster similarity: group average

Proximity of two clusters is the average of pairwise proximity 
between points in the two clusters.

∑

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj
ii

∗
=

∑
∈
∈

Need to use average connectivity for scalability since total 
proximity favors large clusters

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0 90 1 00 0 70 0 60 0 50I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
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Hierarchical clustering: group average
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Hierarchical clustering: group average

Compromise between single and complete 
linklink

St thStrengths:
– Less susceptible to noise and outliers

Limitations:
– Biased towards globular clusters
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Cluster similarity: Ward’s method

Similarity of two clusters is based on the increase 
in squared error when two clusters are mergedin squared error when two clusters are merged
– Similar to group average if distance between 

points is distance squaredp q

Less susceptible to noise and outliers

Biased towards globular clusters

Hierarchical analogue of k-means
C b d t i iti li k
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– Can be used to initialize k-means



Hierarchical clustering comparison
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Hierarchical clustering

Time and space complexity
b f d t i t bj t– n = number of datapoints or objects

– Space requirement ~ O( n2 ) since it uses the 
i it t iproximity matrix.

– Time complexity ~ O( n3 ) many cases.
There are n steps and at each step the proximity 

matrix (size n2) must be searched and updated.
Can be reduced to O( n2 log( n ) ) time for someCan be reduced to O( n log( n ) ) time for some 

approaches.
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Hierarchical clustering

Problems and limitations
– Once a decision is made to combine two– Once a decision is made to combine two 

clusters, it cannot be undone
– No objective function is directly minimizedNo objective function is directly minimized
– Different schemes have problems with one or 

more of the following:more of the following:
Sensitivity to noise and outliers
Difficulty handling different sized clusters and y g

convex shapes
Breaking large clusters
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From hierarchical to partitional clustering

Cut tree at some height to get desired number of 
partitions kpartitions k

k 2
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DBSCAN

DBSCAN is a density-based algorithm.
Density = number of points within a specified– Density = number of points within a specified 
radius (Eps)

– A point is a core point if it has more than a p p
specified number of points (MinPts) within Eps. 

These points are in the interior of a cluster.
A b d i t h f th Mi Pt ithi E– A border point has fewer than MinPts within Eps, 
but is in the neighborhood of a core point.

– A noise point is any point that is not a core pointA noise point is any point that is not a core point 
or a border point. 

Jeff Howbert    Introduction to Machine Learning       Winter 2012               39



DBSCAN: core, border, and noise points
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DBSCAN algorithm

Eliminate noise points
Perform clustering on the remaining pointsPerform clustering on the remaining points
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DBSCAN: core, border, and noise points

original points point types: core, 
border and noise
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Eps = 10, MinPts = 4



When DBSCAN works well

original points clusters

resistant to noise
can handle clusters of different shapes and sizes
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When DBSCAN does NOT work well

(MinPts=4, Eps=9.75).

original points

varying densities
high-dimensional data
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(MinPts=4, Eps=9.92)



DBSCAN: determining EPS and MinPts

Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance
Noise points have the kth nearest neighbor at farther 
distance
So plot sorted distance of every point to its kthSo, plot sorted distance of every point to its k
nearest neighbor
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Cluster validity 

For supervised classification we have a variety of 
measures to evaluate how good our model is

Accuracy precision recall squared error– Accuracy, precision, recall, squared error

For clustering, the analogous question is how to evaluate 
the “goodness” of the resulting clusters?the goodness  of the resulting clusters?

But cluster quality is often in the eye of the beholder! 

It’s still important to try and measure cluster quality
– To avoid finding patterns in noiseg p
– To compare clustering algorithms
– To compare two sets of clusters
– To compare two clusters
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Different types of cluster validation

1. Determining the clustering tendency of a set of data, i.e., 
distinguishing whether non-random structure actually exists in the 
data.data. 

2. Comparing the results of a cluster analysis to externally known 
results, e.g., to externally given class labels.

3 Evaluating how well the results of a cluster analysis fit the data3. Evaluating how well the results of a cluster analysis fit the data 
without reference to external information. 

- Use only the data
4 C i th lt f t diff t t f l t l t4. Comparing the results of two different sets of cluster analyses to 

determine which is better.
5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to 
evaluate the entire clustering or just individual clusters
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evaluate the entire clustering or just individual clusters. 



Measures of cluster validity

Numerical measures used to judge various aspects of cluster 
validity are classified into the following three types:
– External index: Measures extent to which cluster labels match 

externally supplied class labels.
Entropy 

– Internal index: Measures the “goodness” of a clustering structure 
without respect to external information. 

Correlation
Visualize similarity matrix
Sum of Squared Error (SSE)

– Relative index: Compares two different clusterings or clusters. 
Often an external or internal index is used for this function, e.g., SSE 
or entropy.
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Measuring cluster validity via correlation

Two matrices 
– Proximity matrix

“I id ” t i– “Incidence” matrix
One row and one column for each data point.
An entry is 1 if the associated pair of points belong to same cluster.
An entry is 0 if the associated pair of points belongs to different 
clusters.

Compute the correlation between the two matricesp
– Since the matrices are symmetric, only the correlation between 

n ⋅ ( n - 1 ) / 2 entries needs to be calculated.

High correlation indicates that points that belong to theHigh correlation indicates that points that belong to the 
same cluster are close to each other. 
Not a good measure for some density or contiguity based 
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Measuring cluster validity via correlation

Correlation of incidence and proximity matrices for k-means 
clusterings of the following two data sets. 
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corr = -0.9235 corr = -0.5810
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NOTE: correlation will be positive if proximity defined as similarity, 
negative if proximity defined as dissimilarity or distance.



Visualizing similarity matrix for cluster validation

Order the similarity matrix with respect to cluster indices 
and inspect visually. 
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Visualizing similarity matrix for cluster validation

Clusters in random data are not so crisp
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Visualizing similarity matrix for cluster validation

Clusters in random data are not so crisp
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Visualizing similarity matrix for cluster validation

Clusters in random data are not so crisp
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Visualizing similarity matrix for cluster validation

Not as useful when clusters are non-globular
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Internal measures: SSE

Clusters in more complicated figures often aren’t well 
separated
SSE i d f i t l t i t l tSSE is good for comparing two clusterings or two clusters 
(average SSE).
Can also be used to choose the number of clustersCan also be used to choose the number of clusters
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Internal measures: SSE

SSE curve for a more complicated data set
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Framework for cluster validity

Need a framework to interpret any measure. 
– For example, if our measure of evaluation has the value 10, is that 

good, fair, or poor?good, fair, or poor?

Statistics provide a framework for cluster validity
– The more “atypical” a clustering result is, the more likely it represents 

valid structure in the datavalid structure in the data
– Can compare the values of an index that result from random data or 

clusterings to those of a clustering result.
If the value of the index is unlikely then the cluster results are validIf the value of the index is unlikely, then the cluster results are valid

– These approaches are more complicated and harder to understand.

For comparing the results of two different sets of cluster 
analyses, a framework is less necessary.

– However, there is the question of whether the difference between two 
index values is significant
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Statistical framework for SSE

Example
– Compare SSE of 0.005 for three true clusters against SSEs for 

three clusters in random datathree clusters in random data
– Histogram shows distributions of SSEs for 500 sets of three 

clusters in random data points (100 data points randomly placed in 
range 0 2 0 8 for x and y)range 0.2 - 0.8 for x and y)
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Statistical framework for correlation

Correlation of incidence and proximity matrices for the 
k-means clusterings of the following two data sets. 
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Final comment on cluster validity

“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysisdifficult and frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only toanalysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubesg g
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MATLAB interlude

matlab_demo_11.m
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