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Ensemble methods

Basic idea of ensemble methods:
– Combining predictions from competing models– Combining predictions from competing models 

often gives better predictive accuracy than 
individual models.

Shown to be empirically successful in wideShown to be empirically successful in wide 
variety of applications.
– See table on p. 294 of textbook.p

Also now some theory to explain why it works.
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Build and using an ensemble

1) Train multiple separate models using the training1) Train multiple, separate models using the training 
data.

2) Predict outcome for a previously unseen sample 
by aggregating predictions made by the multipleby aggregating predictions made by the multiple 
models.
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Estimation surfaces of five model types
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Ensemble methods

Useful for classification or regression.
– For classification aggregate predictions by votingFor classification, aggregate predictions by voting.
– For regression, aggregate predictions by averaging.

Model types can be:Model types can be:
– Heterogeneous

Example: neural net combined with SVM combinedExample: neural net combined with SVM combined 
decision tree combined with …

– Homogeneous – most common in practice
Individual models referred to as base classifiers (or 
regressors)
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Example: ensemble of 1000 decision trees



Classifier ensembles

Committee methods
– m base classifiers trained independently on different 

l f t i i d tsamples of training data
– Predictions combined by unweighted voting
– Performance:

E[ error ]ave / m  < E[ error ]committee < E[ error ]ave
– Example: bagging

Adaptive methods
– m base classifiers trained sequentially, with q y

reweighting of instances in training data
– Predictions combined by weighted voting
– Performance: E[ error ]train + O( [ md / n ]1/2 )
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Performance: E[ error ]train  O( [ md / n ] )
– Example: boosting



Building and using a committee ensemble
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Building and using a committee ensemble

TRAINING

1) Create samples of training

USING

1) Make predictions with each1) Create samples of training 
data

2) Train one base classifier on 
each sample

1) Make predictions with each 
base classifier separately

2) Combine predictions by 
voting

Test or new data
1  2  3  4 1  2  3  4 1  2  3  4

training
sample 1

training
sample 2

training
sample 3

A  B A  B A  A A  B B  A A B
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1 → A 2 → A 3 → A 4 → B



Binomial distribution (a digression)

The most commonly used discrete probability 
distribution.
Givens:
– a random process with two outcomes, referred p ,

to as success and failure (just a convention)
– the probability p that outcome is successp y p

probability of failure = 1 - p

– n trials of the processp
Binomial distribution describes probabilities that 
m of the n trials are successes, over values of m
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Binomial distribution
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Why do ensembles work?

A highly simplified example …
– Suppose there are 21 base classifiers– Suppose there are 21 base classifiers
– Each classifier is correct with probability

p = 0 70p  0.70
– Assume classifiers are independent

Probability that the ensemble classifier makes– Probability that the ensemble classifier makes 
a correct prediction:
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Why do ensembles work?

Voting by 21 independent classifiers, each correct with p = 0.7
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Probability that exactly k of 21 classifiers will make be correct, assuming each classifier 
is correct with p = 0.7 and makes predictions independently of other classifiers



Ensemble vs. base classifier error

As long as base classifier is better than random (error < 0.5),
bl ill b i t b l ifi
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ensemble will be superior to base classifier



Why do ensembles work?

In real applications …
– “Suppose there are 21 base classifiers …”Suppose there are 21 base classifiers …

You do have direct control over the number of 
base classifiers.

– “Each classifier is correct with probability
p = 0.70 …”

Base classifiers will have variable accuracy, but 
you can establish post hoc the mean and variability 
of the accuracyof the accuracy.

– “Assume classifiers are independent …”
Base classifiers always have some significant
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Base classifiers always have some significant 
degree of correlation in their predictions.



Why do ensembles work?

In real applications …
– “Assume classifiers are independent …”Assume classifiers are independent …

Base classifiers always have some significant 
degree of correlation in their predictions.

– But the expected performance of the ensemble is 
t d t b th th f thguaranteed to be no worse than the average of the 

individual classifiers:
E[ error ]ave / m < E[ error ]committee < E[ error ]aveE[ error ]ave / m  E[ error ]committee E[ error ]ave

⇒ The more uncorrelated the individual classifiers are, 
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Base classifiers: important properties

Diversity (lack of correlation)y ( )

AccuracyAccuracy

Computationally fastComputationally fast
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Base classifiers: important properties

Diversity
– Predictions vary significantly between classifiersPredictions vary significantly between classifiers
– Usually attained by using unstable classifier

small change in training data (or initial model weights) g g ( g )
produces large change in model structure

– Examples of unstable classifiers:
d i i tdecision trees
neural nets
rule-based

– Examples of stable classifiers:
linear models: logistic regression, linear discriminant, etc.
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Diversity in decision trees

Bagging trees on 
simulated dataset.

– Top left panel shows 
original tree.
Eight of trees grown on– Eight of trees grown on 
bootstrap samples are 
shown.

Jeff Howbert    Introduction to Machine Learning       Winter 2012               20



Base classifiers: important properties

Accurate
E t f h b l ifi b tt th d– Error rate of each base classifier better than random

Tension between diversity and accuracy

C t ti ll f tComputationally fast
– Usually need to compute large numbers of classifiers
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How to create diverse base classifiers

Random initialization of model parameters
– Network weights

Resample / subsample training data
– Sample instances

Randomly with replacement (e g bagging)Randomly with replacement (e.g. bagging)
Randomly without replacement
Disjoint partitions

– Sample features (random subspace approach)Sample features (random subspace approach)
Randomly prior to training
Randomly during training (e.g. random forest)

Sample both instances and features– Sample both instances and features
Random projection to lower-dimensional space
Iterative reweighting of training data
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Common ensemble methods

Bagginggg g

BoostingBoosting
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Bootstrap sampling

Given: a set S containing N samples
Goal: a sampled set T containing N samplesGoal: a sampled set T containing N samples
Bootstrap sampling process:
for i = 1 to Nfor i = 1 to N
– randomly select from S one sample with 

replacementreplacement
– place sample in T

If S is large T ill contain ( 1 1 / e ) 63 2%If S is large, T will contain ~ ( 1 - 1 / e ) = 63.2% 
unique samples.
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Bagging

Bagging = bootstrap + aggregation

1. Create k bootstrap samples.
Example:Example:

original data 1 2 3 4 5 6 7 8 9 10

bootstrap 1 7 8 10 8 2 5 10 10 5 9

T i l ifi h b t t l

bootstrap 1 7 8 10 8 2 5 10 10 5 9
bootstrap 2 1 4 9 1 2 3 2 7 3 2
bootstrap 3 1 8 5 10 5 5 9 6 3 7

2. Train a classifier on each bootstrap sample.
3. Vote (or average) the predictions of the k

models
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Bagging with decision trees
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Bagging with decision trees
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Boosting

Key difference:
– Bagging: individual classifiers trained independentlyBagging: individual classifiers trained independently.
– Boosting: training process is sequential and iterative.

Look at errors from previous classifiers to decide 
what to focus on in the next training iteration.g
– Each new classifier depends on its predecessors.

Result: more weight on ‘hard’ samples (the ones g p (
where we committed mistakes in the previous 
iterations).
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Boosting

Initially, all samples have equal weights.
Samples that are wrongly classified have their weights p g y g
increased.
Samples that are classified correctly have their weights 
d ddecreased.
Samples with higher weights have more influence in 
subsequent training iterations.

Original Data 1 2 3 4 5 6 7 8 9 10

subsequent training iterations.
– Adaptively changes training data distribution.

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4
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sample 4 is hard to classify → its weight is increased



Boosting example
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AdaBoost

Training data has N samples
K base classifiers: C C CK base classifiers: C1, C2, …, CK

Error rate εi on i th classifier:

( )∑
=

≠=
N

j
jjiji yxCw

N 1

)(1 δε

where
– wj is the weight on the j th samplej g j p
– δ is the indicator function for the j th sample

δ ( Ci( xj ) = yj ) = 0  (no error for correct prediction)
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δ ( Ci( xj ) ≠ yj ) = 1  (error = 1 for incorrect prediction)



AdaBoost

Importance of classifier i is:
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αi is used in:
– formula for updating sample 

weightsweights
– final weighting of classifiers 

in voting of ensemble 

Relationship of classifier importance α
to training error ε
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to training error ε



AdaBoost

Weight updates:
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If any intermediate iteration produces error rate 
greater than 50%, the weights are reverted backgreater than 50%, the weights are reverted back 
to 1 / n and the reweighting procedure is restarted.
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AdaBoost

Final classification model:
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i.e. for test sample x, choose the class label y
which maximizes the importance-weighted vote 

=iy 1

p g
across all classifiers.
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Illustrating AdaBoost

Data points 
for training

Initial weights for each data point
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Illustrating AdaBoost
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Summary: bagging and boosting

Bagging
– Resample data points

Boosting
– Reweight data pointsResample data points

– Weight of each 
classifier is same

Reweight data points 
(modify data distribution)

– Weight of a classifier 
– Only reduces variance
– Robust to noise and 

tli

depends on its accuracy
– Reduces both bias and 

varianceoutliers

Easily parallelized

variance
– Noise and outliers can 

hurt performance– Easily parallelized
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Bias-variance decomposition

expected error = bias2 + variance + noise

where “expected” means the average behavior of
the models trained on all possible samples of

underlying distribution of data

where “expected” means the average behavior of
the models trained on all possible samples of

underlying distribution of data
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Bias-variance decomposition

An analogy from the Society for Creative 
Anachronism …Anachronism …
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Bias-variance decomposition

Examples of utility for understanding classifiers
– Decision trees generally have low bias but– Decision trees generally have low bias but 

high variance.
– Bagging reduces the variance but not the biasBagging reduces the variance but not the bias 

of a classifier.
⇒ Therefore expect decision trees to perform⇒ Therefore expect decision trees to perform 

well in bagging ensembles.
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Bias-variance decomposition

General relationship to model complexity
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