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Ensemble methods

e Basic idea of ensemble methods:

— Combining predictions from competing models
often gives better predictive accuracy than
iIndividual models.

e Shown to be empirically successful in wide
variety of applications.

— See table on p. 294 of textbook.

e Also now some theory to explain why it works.
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Build and using an ensemble

1) Train multiple, separate models using the training
data.

2) Predict outcome for a previously unseen sample

by aggregating predictions made by the multiple
models.
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Relative Performance Examples: 5 Algorithms on 6 Datasets
(John Elder, Elder Research & Stephen Lee, U. Idaho, 1997)
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Essentially every Bundling method improves performance
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Estimation surfaces of five model types
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Figure 3. Estimation surfaces of five modeling algorithms. Clockwise from top left: decision tree, nearest neighbor,
polynomial network, kernel; center: Delaunay planes ( Elder 1993).
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Ensemble methods

e Useful for classification or regression.
— For classification, aggregate predictions by voting.
— For regression, aggregate predictions by averaging.
e Model types can be:

— Heterogeneous

¢ Example: neural net combined with SVM combined
decision tree combined with ...

— Homogeneous — most common in practice

¢ Individual models referred to as base classifiers (or
regressors)

¢ Example: ensemble of 1000 decision trees
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Classifier ensembles

e Committee methods

— m base classifiers trained independently on different
samples of training data

— Predictions combined by unweighted voting
— Performance:

E[error ./ m < E[error] miee < E[error] .
— Example: bagging

e Adaptive methods

— m base classifiers trained sequentially, with
reweighting of instances in training data

— Predictions combined by weighted voting
— Performance: E[ error ],,,;, + O([md / n ]¥2)
— Example: boosting
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Building and using a committee ensemble

|
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Step 3:
combine
predictions
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Building and using a committee ensemble

TRAINING

1) Create samples of training
data

2) Train one base classifier on
each sample

training training training
sample 1 sample 2 sample 3
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USING

1) Make predictions with each
base classifier separately

2) Combine predictions by
voting

Test or new data
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Binomial distribution (a digression)

e The most commonly used discrete probability
distribution.

e Givens:

— a random process with two outcomes, referred
to as success and failure (just a convention)

— the probability p that outcome Is success
# probability of failure =1 - p
— n trials of the process

e Binomial distribution describes probabilities that
m of the n trials are successes, over values of m
Inrange 0 <m<n
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Binomial distribution
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Why do ensembles work?

e A highly simplified example ...
— Suppose there are 21 base classifiers

— Each classifier is correct with probability
Pp=0.70

— Assume classifiers are independent

— Probability that the ensemble classifier makes
a correct prediction:

21 21 _ _
Z( i )p'(l— p)*~ =0.97

=11
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Why do ensembles work?

Voting by 21 independent classifiers, each correct with p =0.7
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Probability that exactly k of 21 classifiers will make be correct, assuming each classifier
Is correct with p = 0.7 and makes predictions independently of other classifiers
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Ensemble vs. base classifier error

nsemble classifier error
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As long as base classifier is better than random (error < 0.5),

0.8 1

ensemble will be superior to base classifier
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Why do ensembles work?

e In real applications ...

— “Suppose there are 21 base classifiers ...”

¢ You do have direct control over the number of
base classifiers.

— “Each classifier is correct with probability
p=0.70...7

+ Base classifiers will have variable accuracy, but
you can establish post hoc the mean and variability
of the accuracy.

— “Assume classifiers are independent ...”

+ Base classifiers always have some significant
degree of correlation in their predictions.
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Why do ensembles work?

e In real applications ...

— “Assume classifiers are independent ...”

+ Base classifiers always have some significant
degree of correlation in their predictions.

— But the expected performance of the ensemble is
guaranteed to be no worse than the average of the
iIndividual classifiers:

E[error],./m < E[error ] mmiee < E[error] .

—> The more uncorrelated the individual classifiers are,
the better the ensemble.
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Base classifiers: important properties

e Diversity (lack of correlation)
e Accuracy

e Computationally fast
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Base classifiers: important properties

Diversity
— Predictions vary significantly between classifiers
— Usually attained by using unstable classifier

¢ small change in training data (or initial model weights)
produces large change in model structure

— Examples of unstable classifiers:
# decision trees
+ neural nets
# rule-based
— Examples of stable classifiers:
+ linear models: logistic regression, linear discriminant, etc.
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Diversity In decision trees
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: e o * ' e Bagging trees on
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— Top left panel shows
original tree.

— Eight of trees grown on
bootstrap samples are
shown.
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Base classifiers: important properties

Accurate
— Error rate of each base classifier better than random

Tension between diversity and accuracy

Computationally fast
— Usually need to compute large numbers of classifiers
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How to create diverse base classifiers

e Random Iinitialization of model parameters
— Network weights
e Resample / subsample training data

— Sample instances
+ Randomly with replacement (e.g. bagging)
+ Randomly without replacement
+ Disjoint partitions
— Sample features (random subspace approach)
¢ Randomly prior to training
+ Randomly during training (e.g. random forest)

— Sample both instances and features
e Random projection to lower-dimensional space
e Iterative reweighting of training data
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Common ensemble methods

— —
e Bagging
e Boosting
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Bootstrap sampling

e Given: a set S containing N samples
e Goal: a sampled set T containing N samples
e Bootstrap sampling process:

fori=1to N

— randomly select from S one sample with
replacement

— place sample in T

elf Sislarge, Twillcontain~(1-1/e)=63.2%
unique samples.
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Bagging

e Bagging = bootstrap + aggregation

1. Create k bootstrap samples.

Example:
original data 1 2 3 4 5 7 8 10
bootstrap 1 7 10 8 2 10 | 10 9
bootstrap 2 1 4 9 1 2 2 7 2
bootstrap 3 1 5 10 5 9 6 7

2. Train a classifier on each bootstrap sample.

3. Vote (or average) the predictions of the k
models.

Jeff Howbert

Introduction to Machine Learning

Winter 2012

25




1.0

0E

Bagging with decision trees

Target concept

» u",_%.

:
™
e
LR L™

L ]

Do,

.'
g ely =

3

"
»

%

- -’
5
L

ie;

E

A&

10

Single decision tree

0.5 og 05

100 bagged decision tree

05

Jeff Howbert

Introduction to Machine Learning

Winter 2012

26




Bagged tree decision boundary
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Bagging with decision trees
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Boosting

e Key difference:
— Bagging: individual classifiers trained independently.
— Boosting: training process is sequential and iterative.

e Look at errors from previous classifiers to decide
what to focus on Iin the next training iteration.

— Each new classifier depends on its predecessors.
e Result: more weight on ‘hard’ samples (the ones

where we committed mistakes in the previous
iterations).
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Boosting

e Initially, all samples have equal weights.

e Samples that are wrongly classified have their weights
Increased.

e Samples that are classified correctly have their weights
decreased.

e Samples with higher weights have more influence in
subsequent training iterations.

— Adaptively changes training data distribution.

Boosting (Round 3)

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4
QIO 0 s T s 1

sample 4 is hard to classify — its weight is increased
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Boosting Example
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After one 1teration
CART splits, larger points have great weight
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After 3 1terations
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After 20 1terations
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Decision boundary after 100 1terations
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AdaBoost

e Training data has N samples
e K base classifiers: C,, C,, ..., Cy
e Error rate & on i classifier:

1 N
& :NZWjé(Ci(xj) -+ yj)
j=1

where
— w; is the weight on the j™ sample

— ¢ is the indicator function for the j sample
¢ 0(C(x)=y;)=0 (no error for correct prediction)
¢ O(C(x)=y;)=1 (error =1 for incorrect prediction)
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AdaBoost

e Importance of classifier i is:

1, (1-¢
a =—In
2 &,

® ¢ is used in:

— formula for updating sample
weights

— final weighting of classifiers
In voting of ensemble

Relationship of classifier importance a
to training error ¢
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AdaBoost

e Weight updates:

(i+) wi® ;eXp_ai It C,(x;)=y,
. Z; |exp” if Ci(x)#Y,

where Z. is a normalization factor

e If any Intermediate iteration produces error rate
greater than 50%, the weights are reverted back
to 1 / n and the reweighting procedure Is restarted.
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AdaBoost

e Final classification model:

K
C*(x)=argmax » &5(C;(x)=y)
y =1
l.e. for test sample x, choose the class label y
which maximizes the importance-weighted vote

across all classifiers.
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Illustrating AdaBoost

Initial weights for each data point Data points
AL for training
~ ~ /
o 0.1 0.1 0.1
Original m i I
B1
_ 0.0094 0.0094 0.4623
Boosting

Round 1 aal il

Sl L 0 =1.9459
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Illustrating AdaBoost

|
B1
0.0094 | 0.0094 0.4623
Boosting |
Round 1 +' el il Sl ) Ml | Bl B o = 1.9459
[
|
B2
4. 0.3037 0.0009 : 0.0422
Boosliing
round2 | A [=] = =[=]= =[+[+] _ o-20323
[
|
B3
0.0276 0.1819 0.0038 1
Boosting !
Round3 _+++ ++++ + ++) o = 3.8744
[
|
Overall +++ == == = ++
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Summary: bagging and boosting

e Bagging e Boosting
— Resample data points — Rewelght data points
— Weight of each (modify data distribution)
classifier is same — Weight of a classifier
— Only reduces variance depends on its accuracy
— Robust to noise and — Reduces both bias and
outliers variance

— Noise and outliers can

— Easily parallelized hurt performance
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Blas-variance decomposition

expected error = bias? + variance + noise
where “expected” means the average behavior of
the models trained on all possible samples of
underlying distribution of data
Where T .3
2 4 <
(biag)* = f {Ep[y(x; D)] — h(x)} p(x) dx
variance = f Ep [{y(x; D) — Eply(x; D)]}?] p(x) dx
noise = ]f{h(x) - Q\p(x ,t) dxdt
t ) = h(x) + noise is the
observed noisy target value
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Blas-variance decomposition

e An analogy from the Society for Creative
Anachronism ...
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Blas-variance decomposition

e Examples of utility for understanding classifiers

— Decision trees generally have low bias but
high variance.

— Bagging reduces the variance but not the bias
of a classifier.

—> Therefore expect decision trees to perform
well in bagging ensembles.
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Blas-variance decomposition

| |
e General relationship to model complexity
Ty
2 High Bias Low Bias
FLT:_]' Low Variance High Variapce
e
2
=
2
E
o
Training Sample
Low High
Model Complexity
FIGURE 2.11. Test and training error as a function
of model complerity.
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