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Random forests

Given: N training samples, p variables.
Algorithm:

1. For b = 1 to B:
a. Draw a bootstrap sample of size N from training data.
b Grow a random forest tree T on the bootstrapped data byb. Grow a random-forest tree Tb on the bootstrapped data, by 

recursively repeating the following steps for each terminal 
node, until the minimum node size nmin is reached.
i Select m variables at random from the p variablesi. Select m variables at random from the p variables.
ii. Pick the best variable and split-point among the m.
iii. Split the node into two child nodes.

2 O t t th bl f B t {T }2. Output the ensemble of B trees {Tb}.
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Random forests

Given: N training samples, p variables.
Algorithm:

1. For b = 1 to B:
a. Draw a bootstrap sample of size N from training data.
b Grow a random forest tree T on the bootstrapped data byb. Grow a random-forest tree Tb on the bootstrapped data, by 

recursively repeating the following steps for each terminal 
node, until the minimum node size nmin is reached.
i Select m variables at random from the p variablesi. Select m variables at random from the p variables.
ii. Pick the best variable and split-point among the m.
iii. Split the node into two child nodes.

2 O t t th bl f B t {T }2. Output the ensemble of B trees {Tb}.

Only difference from bagging with decision trees.
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y gg g
– m typically ≤ sqrt( p ) (even as low as 1)



Random forests

Random forests routinely outperform bagged ensembles, 
and are often competitive with boosting.
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Random forests

Random forests provide even more reduction of 
variance than bagged decision trees.variance than bagged decision trees.
– But still do not impact bias.

Benefit appears to be from de-correlation of pp
individual trees.
– Bootstrap samples still have significant correlation.

Simpler to train and tune than boosting 
algorithms.
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Random forests

First implemented in FORTRAN by Leo Breiman and 
Adele Cutler, and the term trademarked by them.
http://stat-www.berkeley.edu/users/breiman/RandomForests/cc_home.htm

C i l di t ib ti li d l i l t S lf dCommercial distribution licensed exclusively to Salford
Systems.

Lots of open-source implementations in various 
languages and machine learning packages.

Available in MATLAB as class TreeBagger (Statistics 
Toolbox)
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Classifier ensembles

For improved prediction accuracy (vs singleFor improved prediction accuracy (vs. single 
model) often need 100’s to 1000’s of base 
classifiers in ensemble

BUT …BUT …
Committee-type classifier ensembles are readily 
parallelizedpa a e ed
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E bl Cl d AEnsemble Cloud Army
(ECA)

A Platform for Parallel Processing of Machine 
Learning Problems in the Amazon CloudLearning Problems in the Amazon Cloud

J. Jeffry Howbert
Insilicos LLC
M 11 2011
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Insilicos LLC: background

Started 2003

Founders: Erik Nilsson Brian Pratt Bryan– Founders: Erik Nilsson, Brian Pratt, Bryan 
Prazen

8 l8 employees

$4M in grant funding to date (mostly SBIR)

Focus on mass spec proteomics
– Software: analysis tools and pipeliney p p
– Cardiovascular biomarker discovery
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ECA project: concept

Machine learning ensembles,
trained and used in parallel

Two performance benefits:

p

Two performance benefits:
Ensemble of models => better prediction 
accuracy than single model (usually)accuracy than single model (usually)
Ensembles are readily parallelized => faster
computationp

NOTE: Work to date all on classifiers, but is being extended 
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, g
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R programming language

Functional language for statistical computing and 
graphicsgraphics
de facto standard throughout statistics community
Hundreds of supporting packagesHundreds of supporting packages
Open source

.5 v vv v
v

v

app. error rate: 0.2

0
6.

5
7.

0
7.

l.L
en

gt
h

e

e

e

e
e

e

e

e

e e
e

e

e
e

e ee

e
ee v

v

v
v

v

v

v

vv

v

vv

v

v

v

v

v v

v

v
v

vv
v

vv

v
v
vvvv

v
v

v

5
5.

0
5.

5
6.

Se
pa

l

s
s

ss

s

s

s

ss

s

ss

s s

s

s

s

s

s

s

s

s

s
s s

ss

ss

s
s

s

ss

s

s
sss s

s

s

s

s

s

e
e

e

e
e

ee

ee
e

e

ee

e
ee

e
e

e

e

eee

e

e

e ee

e

ev

v

v v
v

v

v
v v

Jeff Howbert    Introduction to Machine Learning       Winter 2012               11

2.0 2.5 3.0 3.5 4.0
4.

5 s s
ss

s
ss s

s



Amazon Web Services (AWS)

Basic resources
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AWS basic resources

EC2: Elastic Compute Cloud
– Configurable compute nodes– Configurable compute nodes
– Virtual machines in a variety of “sizes”

On demand reserved or spot instances– On-demand, reserved, or spot instances
S3: Simple Storage Service

St i d S3 “b k t”– Store in named S3 “bucket”
– Holds unlimited number of objects
– Any type of object, 1 B to 5 TB in size
– No file system; put and get using name of 

bj t
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AWS basic resources

EBS: Elastic Block Store
– Block level storage volumes from 1 GB to 1 TBBlock level storage volumes from 1 GB to 1 TB
– Can be attached to any running EC2 instance
– Persist independently of instancesPersist independently of instances

AMI: Amazon Machine Image
– Pre-configured virtual machine: OS + apps + toolsPre configured virtual machine: OS  apps  tools
– Loads onto EC2 node at launch
– Thousands availableThousands available
– Can customize own AMIs and save for later use
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ECA architecture

EBS

worker node 1
worker node 2

worker node n
AMIs

S3

results

S3 
bucketmaster node

scripts,
data

local machine dataconfig files

control
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ECA hardware components

CLOUD
– EC2 nodes– EC2 nodes

Mostly “small” size
– 32-bit Intel processor, 1.7 GB RAM, 160 GB hard drive32 bit Intel processor, 1.7 GB RAM, 160 GB hard drive
– $0.085 / hr

Limited use of “large” size (64-bit, faster, more 
memory etc )memory, etc.)

– S3 buckets for off-node data storage
EBS l t t AMI– EBS volume to store AMIs

LOCAL MACHINE
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ECA software components

Used only open source components

CLOUD: Amazon Machine ImageCLOUD: Amazon Machine Image
– Ubuntu Linux OS
– MPI (message passing interface) – MPICH2
– Python
– R statistical language
– R package Rmpig

Allows parallel distribution of calculations to a cluster
Communicates via underlying MPI  

LOCAL MACHINE: Python
– boto – Python wrapper for AWS API; allows calls to cloud 

resources
– simplejson – Python parser for JSON-formatted config files

Jeff Howbert    Introduction to Machine Learning       Winter 2012               17



ECA system launch (1)

1) CLOUD: pre-existing resources
– S3 bucket
– AMI stored in EBS

2) LOCAL MACHINE: Python script initiates launch
– Reads config files (JSON format)

U l d d d R i S3– Uploads data and R scripts to S3
– Makes request to AWS for one master node

Passes control to master node and waits for– Passes control to master node and waits for 
results

…. < job runs autonomously in cloud > ….
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ECA system launch (2)

3) CLOUD: Python and bash scripts
a) Head node:a) Head node:

Requests desired number of worker nodes from AWS
Verifies all worker nodes have booted
Verifies SSH communication with all worker nodes
Boots MPI demon on all nodes, verifies communication 

around MPI ringaround MPI ring
Transfers R scripts from S3 bucket to local disk

b) All nodes: transfer data from S3 bucket to localb) All nodes: transfer data from S3 bucket to local 
disk

c) Head node: passes control to ensemble R script
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Ensemble program flow (1)

SETUP
One master node
Multiple worker nodes
Master is hub for all
communication

Bidirectional communication via MPI between master and 
each worker
No worker-worker

R script with all commands for training, testing, etc. on master
Full copy of training and test data on each worker
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Ensemble program flow (2)

MAIN CYCLEMAIN CYCLE
1. Master sends command to all

workers to perform these tasks
in parallel:in parallel:

a. Create unique partition of
training data, using unique
random seed

b. Train a base classifier on partition
c. Generate class predictions for test data, using trained 

classifier
2. Workers automatically return predictions to master
3. Master stores predictions
4. Repeats …
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4. Repeats …



Ensemble program flow (3)

END PROCESSING
All by master:
1. Aggregates predictions from all workers over all cycles
2. Computes most commonly predicted class for each 

instance in test set outputs that as ensemble predictioninstance in test set, outputs that as ensemble prediction
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ECA benchmarks

Datasets

Name Source Domain Instances Features Feature type(s) Classes

satimage UCI soil types from 
satellite images 

4435 train,  
2000 test 36 numeric (0-255) 6

covertype UCI
forest cover types 
from cartographic 

variables 
581012 54

10 numeric, 
44 binary 

qualitative
7

jones Ref. 3 protein secondary 
structure

209529 train, 
17731 test 315 numeric 3

Jeff Howbert    Introduction to Machine Learning       Winter 2012               23



ECA benchmarks

For ensembles, training subsets must deliver diversity, 
accuracy, and fast computation.
For large datasets used with ECA, bootstrap samples are 
too large for practical computation.
I t d h ll b t f d t dInstead, much smaller subsets of records are generated 
by random sampling without replacement.  

From Lecture 3:
“The key principle for effective sampling is the following: y p p p g g

– Using a sample will work almost as well as using the entire data 
set, provided the sample is representative.

– A sample is representative if it has approximately the same
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– A sample is representative if it has approximately the same 
distribution of properties (of interest) as the original set of data”



ECA benchmarks

Ensembles have better accuracy than
individual component classifiers
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ECA benchmarks

Accuracy remains high despite large reduction in features
71

67

69

71

y,
 %

63

65

io
n 
ac
cu
ra
cy

Jones

neural nets, 315 features

neural nets, 157 features

59

61

Cl
as
si
fic
at
i

neural nets, 78 features

decision trees, 315 features

decision trees, 157 features

decision trees, 78 features

55

57

100 1000 10000 100000

Jeff Howbert    Introduction to Machine Learning       Winter 2012               26

Number of instances per base classifier



Amdahl’s Law

The potential speedup from parallelization is strictly 
limited by the portion of the computation that cannot 
be parallelizedbe parallelized.
Assume proportion P of computation can be 
parallelized, and proportion (1 – P) is necessarily 
sequential The speedup from parallelizing on Nsequential.  The speedup from parallelizing on N
processors is:

1

N
PP +− )1(

1

For example, if P = 0.9, maximum possible speedup 

N
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p , , p p p
is 10, no matter how large N is.



ECA benchmarks

Computational performance:
ensembles of decision treesensembles of decision trees
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ECA benchmarks

Computational performance:
ensembles of neural networks
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Important lessons (1)

Large data handling not as critical as expected
– Best ensemble accuracy associated with– Best ensemble accuracy associated with 

smaller partitions (< 5,000 instances)

Ensembles with small partitions run much faster 
than those with larger partitionsthan those with larger partitions
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Important lessons (2)

Ensembles with small partitions run much faster 
than single classifier trained on all of data, andthan single classifier trained on all of data, and
are more accurate

Number 
of trees

Instances 
per tree

Processing 
mode

Number 
of nodes

Node 
type

Runtime Accuracy, 
%

1 209529 serial 1 64 bit 2:01:34 58 301 209529 serial 1 64-bit 2:01:34 58.30
100 2500 serial 1 64-bit 29:54 66.30
180 2500 parallel 60 32-bit 5:44 66.66

Jones dataset, ensemble of decision trees
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ECA is open source

RMPI version released on SourceForgeRMPI version released on SourceForge

ica sf netica.sf.net
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Occam’s Razor

Given two models with similar generalization 
errors, one should prefer the simpler model overerrors, one should prefer the simpler model over 
the more complex model.

For complex models, there is a greater chance it 
was fitted accidentally by errors in data.y y

Model complexity should therefore be considered ode co p e ty s ou d t e e o e be co s de ed
when evaluating a model.
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Generalization paradox of ensembles

http://www.datamininglab.com/pubs/Paradox_JCGS.pdf
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Ensemble methods

Three fundamental reasons an ensemble may 
work better than a single classifierwork better than a single classifier

statistical representationalcomputational
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Tom Dietterich, “Ensemble Methods in Machine Learning” (2000)


