Classification
Neural Networks 1
Jeff Howbert Introduction to Machine Learning Winter 2012 1

Neural networks

e Topics
— Perceptrons
& structure
training
expressiveness
— Multilayer networks
possible structures

— activation functions
+ training with gradient descent and backpropagation

expressiveness

Jeff Howbert Introduction to Machine Learning Winter 2012 2

Connectionist models

e Consider humans:
— Neuron switching time ~ 0.001 second
— Number of neurons ~ 1010
— Connections per neuron ~ 104°
— Scene recognition time ~ 0.1 second
— 100 inference steps doesn’'t seem like enough

= Massively parallel computation

Jeff Howbert Introduction to Machine Learning Winter 2012

Neural networks

e Properties:
— Many neuron-like threshold switching units
— Many weighted interconnections among units
— Highly parallel, distributed process
— Emphasis on tuning weights automatically

Jeff Howbert Introduction to Machine Learning Winter 2012

4

Neural network application

ALVINN: An Autonomous Land Vehicle In a

Neural Network
(Carnegie Mellon University Robotics Institute, 1989-1997)

ALVINN is a perception system which
learns to control the NAVLAB vehicles
by watching a person drive. ALVINN's
architecture consists of a single hidden
layer back-propagation network. The
input layer of the network is a 30x32
unit two dimensional "retina" which
receives input from the vehicles video
camera. Each input unit is fully
connected to a layer of five hidden
units which are in turn fully connected
to a layer of 30 output units. The output
layer is a linear representation of the
direction the vehicle should travel in
order to keep the vehicle on the road.

Jeff Howbert Introduction to Machine Learning Winter 2012 5

Neural network application

|
Sharp Straight Sharp
Left Ahead Right
30 Output
Units
30x32 Sensor
Input Retina

ALVINN drives 70 mph
on highways!

Jeff Howbert Introduction to Machine Learning

Winter 2012

6

Perceptron structure

e Model is an assembly of Input

des Wi,
nodes connected by oees Outout
weighted links X1l b hode
XQ— —»> Y

e Output node sums up its |
iInput values according to X5
the weights of their links

e Output node sum then y =](Z WX, —t) or
compared against some ;

threshold t :
y= Slgn(z w.Xx; —t)
J

Jeff Howbert Introduction to Machine Learning Winter 2012 7

Example: modeling a Boolean function

X [Xo | Xa| Y Input Black box
110/lo0]o0

Xi1—t»
10| 1|1
1 1 0 1 Output
111|111
olo|1]o0 Xo—> Y
ol1]l0]0
o111 X3—Lp
ololo]|oO

Output Y is 1if at least two of the three inputs are equal to 1.

Jeff Howbert Introduction to Machine Learning Winter 2012 8

Perceptron model

Input
nodes .
Xl Xz X3 Y ‘\:\: ". ‘
1101 01 0 X I _ Output
1101|111 15 ~ node
11]0]1
11111
olo|1]o0 Xo- > Y
0 1 0 0
o1 1]|1 X3
0 0 0 0

y=1(0.3x; +0.3x, + 0.3x; > 0.4)

1 If zis true

where 7(z) =
(=) {O otherwise

Jeff Howbert Introduction to Machine Learning Winter 2012

Example: decision surface for Boolean function on preceding slides

Perceptron decision boundary

Perceptron decision boundaries are linear

(hyperplanes in higher dimensions)

X, ' y5-05

Jeff Howbert

Introduction to Machine Learning

Winter 2012

10

Expressiveness of perceptrons

e Can model any function where positive and negative
examples are linearly separable

— Examples: Boolean AND, OR, NAND, NOR
e Cannot (fully) model functions which are not linearly

separable.

— Example: Boolean XOR 1.5

>
ra

= B

-~ -0 0O

&

o

n
T

|
-0.5 0

Jeff Howbert

Introduction to Machine Learning

Winter 2012

11

Perceptron training process

1. Initialize weights with random values.
2. Do

a. Apply perceptron to each training example.
D. If example is misclassified, modify weights.

3. Until all examples are correctly classified, or
process has converged.

Jeff Howbert Introduction to Machine Learning Winter 2012

12

Perceptron training process

e Two rules for modifying weights during training:

— Perceptron training rule
+ train on thresholded outputs <Z> > [Q—z ' ‘
+ driven by binary differences between correct and

predicted outputs
+ modify weights with incremental updates

— Delta rule
+ train on unthresholded outputs 6

+ driven by continuous differences between correct
and predicted outputs

+ modify weights via gradient descent

Jeff Howbert Introduction to Machine Learning Winter 2012 13

Perceptron training rule

1. Initialize weights with random values.
2. Do
a. Apply perceptron to each training sample 1.
b. If sample i is misclassified, modify all weights j.

w, < w, +1(y; = 3,)x,
where
y; Is target (correct)output for samplei (Oor1)
y, is thresholded perceptronoutput (O or1)
n 1S learningrate (a smallconstant)

3. Until all samples are correctly classified.

Jeff Howbert Introduction to Machine Learning Winter 2012 14

Perceptron training rule

a. If sample i is misclassified, modify all weights j.
w, —w, +1(y, - 5)x,
where
y, Is target (correct) output for samplei (O or1)
y, is thresholded perceptronoutput (0 or 1)

n 1S learning rate (a small constant)
Examples:

y, =y, no update
y;—¥; =1 x,small, positive w, increased by small amount
y;—¥; =1 x, large, negative w, decreased by large amount

y: — ¥, =L x, large, negative w; increased by large amount

Jeff Howbert Introduction to Machine Learning Winter 2012 15

Perceptron training rule

e Example of processing one sample f1 >;2 ’:3 T
n=0.1
yz _.),}i :1

77(% —J,}i)xfl =0.1
77(yi _j}i)xz'Z =0.0
77(yi _j}:‘)xiB =0.1

Jeff Howbert Introduction to Machine Learning Winter 2012 16

Delta training rule

e Based on squared error function for weight
vector:

E(W) :%Z(yi _j}i)z :%Z(yi _W'Xi)z

Note that error is difference between correct
output and unthresholded sum of inputs, a
continuous quantity (rather than binary difference
between correct output and thresholded output).

e Weights are modified by descending gradient
of error function.

Jeff Howbert Introduction to Machine Learning Winter 2012

17

Squared error function for weight vector w

|]
E(wi,wz)
1.8+
164
1.4+
1.2+
0
1. T
1 l—"_‘_'_'—'_'_‘—-—-—.____'l_"_l_l_ - 0.5
05 T 7 Wo
Wy 0 1
Figure 5.20. Error surface E'(wy, wo) for a two-parameter model.
Jeff Howbert Introduction to Machine Learning Winter 2012 18

Gradient of error function

Gradient :
VE(W) = OoF OF OF
ow, ow, Ow,

Training rule for w .
AW = —-nVE(W)

Training rule for individual weight :

oE
Aw. =—n——
/ anj

Jeff Howbert Introduction to Machine Learning Winter 2012 19

Gradient of squared error function

GE Z(
8w 8w 2 Vi3’

1 ~\ O R
=220y =3)—(:~7)
2 ow,
~y O
:Z(yi _yi)_(yi _W.Xi)
,- ow,

23 0= 3w

Jeff Howbert Introduction to Machine Learning Winter 2012

Delta training rule

1. Initialize weights with random values.
2. Do
a. Apply perceptron to each training sample 1.
b. If sample i is misclassified, modify all weights j.

w, —w, +1(y, - 5,)x,
where
y; Is target (correct) output for samplei (O or 1)
y, is unthresholded perceptronoutput (continuous value)
n 1S learning rate (a small constant)

3. Until all samples are correctly classified, or process
converges.

Jeff Howbert Introduction to Machine Learning Winter 2012 21

Gradient descent: batch vs. incremental

e Incremental mode (illustrated on preceding slides)

— Compute error and weight updates for a single
sample.

— Apply updates to weights before processing next
sample.

e Batch mode

— Compute errors and weight updates for a block of
samples (maybe all samples).

— Apply all updates simultaneously to weights.

Jeff Howbert Introduction to Machine Learning Winter 2012 22

Perceptron training rule vs. delta rule

e Perceptron training rule guaranteed to correctly classify
all training samples if:

— Samples are linearly separable.
— Learning rate 7 is sufficiently small.

e Delta rule uses gradient descent. Guaranteed to
converge to hypothesis with minimum squared error |f:

— Learning rate 7 is sufficiently small.
Even when:

— Training data contains noise.

— Training data not linearly separable.

Jeff Howbert Introduction to Machine Learning Winter 2012 23

Equivalence of perceptron and linear models

Linear Regression of 01 Responss

s vl

FIGURE 2.1. A classification example in two di-
mensions. The classes are coded as a binary variable
(1 = 0, = 1), and then fit by linear re-
gression. The line is the decision boundary defined by
273 = 0.5. The orange shaded region denotes that part
of input space classified as , while the blue region
is classified as

Jeff Howbert Introduction to Machine Learning Winter 2012 24

