# Classification Neural Networks 1

#### **Neural networks**

- Topics
  - Perceptrons
    - structure
    - training
    - expressiveness
  - Multilayer networks
    - possible structures
      - activation functions
    - training with gradient descent and backpropagation
    - expressiveness

#### **Connectionist models**

- Consider humans:
  - Neuron switching time ~ 0.001 second
  - Number of neurons ~ 10<sup>10</sup>
  - Connections per neuron ~ 10<sup>4-5</sup>
  - Scene recognition time ~ 0.1 second
  - 100 inference steps doesn't seem like enough
  - ⇒ Massively parallel computation

#### **Neural networks**

#### Properties:

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

## Neural network application

## ALVINN: An Autonomous Land Vehicle In a Neural Network

(Carnegie Mellon University Robotics Institute, 1989-1997)

ALVINN is a perception system which learns to control the NAVLAB vehicles by watching a person drive. ALVINN's architecture consists of a single hidden layer back-propagation network. The input layer of the network is a 30x32 unit two dimensional "retina" which receives input from the vehicles video camera. Each input unit is fully connected to a layer of five hidden units which are in turn fully connected to a layer of 30 output units. The output layer is a linear representation of the direction the vehicle should travel in order to keep the vehicle on the road.



## Neural network application



## ALVINN drives 70 mph on highways!



## Perceptron structure

- Model is an assembly of nodes connected by weighted links
- Output node sums up its input values according to the weights of their links
- Output node sum then compared against some threshold t



$$y = I(\sum_{j} w_{j} x_{j} - t) \quad \text{or} \quad$$

$$y = sign(\sum_{j} w_{j} x_{j} - t)$$

## Example: modeling a Boolean function

| X <sub>1</sub> | $X_2$ | X <sub>3</sub> | Υ |
|----------------|-------|----------------|---|
| 1              | 0     | 0              | 0 |
| 1              | 0     | 1              | 1 |
| 1              | 1     | 0              | 1 |
| 1              | 1     | 1              | 1 |
| 0              | 0     | 1              | 0 |
| 0              | 1     | 0              | 0 |
| 0              | 1     | 1              | 1 |
| 0              | 0     | 0              | 0 |



Output Y is 1 if at least two of the three inputs are equal to 1.

## Perceptron model

| X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Υ |
|----------------|----------------|----------------|---|
| 1              | 0              | 0              | 0 |
| 1              | 0              | 1              | 1 |
| 1              | 1              | 0              | 1 |
| 1              | 1              | 1              | 1 |
| 0              | 0              | 1              | 0 |
| 0              | 1              | 0              | 0 |
| 0              | 1              | 1              | 1 |
| 0              | 0              | 0              | 0 |



$$y = I(0.3x_1 + 0.3x_2 + 0.3x_3 > 0.4)$$
where 
$$I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

## Perceptron decision boundary

Perceptron decision boundaries are linear (hyperplanes in higher dimensions)



Example: decision surface for Boolean function on preceding slides

## **Expressiveness of perceptrons**

- Can model any function where positive and negative examples are linearly separable
  - Examples: Boolean AND, OR, NAND, NOR
- Cannot (fully) model functions which are not linearly separable.
  - Example: Boolean XOR

| X <sub>1</sub> | X <sub>2</sub> | у  |
|----------------|----------------|----|
| 0              | 0              | -1 |
| 1              | 0              | 1  |
| 0              | 1              | 1  |
| 1              | 1              | -1 |



## Perceptron training process

- 1. Initialize weights with random values.
- 2. Do
  - a. Apply perceptron to each training example.
  - b. If example is misclassified, modify weights.
- 3. Until all examples are correctly classified, or process has converged.

## Perceptron training process

- Two rules for modifying weights during training:
  - Perceptron training rule
    - train on thresholded outputs



- driven by binary differences between correct and predicted outputs
- modify weights with incremental updates
- Delta rule
  - train on unthresholded outputs



- driven by continuous differences between correct and predicted outputs
- modify weights via gradient descent

## Perceptron training rule

- 1. Initialize weights with random values.
- 2. Do
  - a. Apply perceptron to each training sample i.
  - b. If sample *i* is misclassified, modify all weights *j*.

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$
  
where

 $y_i$  is target (correct) output for sample i (0 or 1)

 $\hat{y}_i$  is thresholded perceptronoutput (0 or 1)

 $\eta$  is learning rate (a small constant)

3. Until all samples are correctly classified.

## Perceptron training rule

#### a. If sample *i* is misclassified, modify all weights *j*.

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$

where

 $y_i$  is target (correct) output for sample i (0 or 1)

 $\hat{y}_i$  is thresholded perceptron output (0 or 1)

 $\eta$  is learning rate (a small constant)

#### **Examples:**

$$y_i = \hat{y}_i$$
 no update

$$y_i - \hat{y}_i = 1$$
;  $x_{ij}$  small, positive  $w_j$  increased by small amount

$$y_i - \hat{y}_i = 1$$
;  $x_{ij}$  large, negative  $w_j$  decreased by large amount

$$y_i - \hat{y}_i = -1$$
;  $x_{ij}$  large, negative  $w_j$  increased by large amount

## Perceptron training rule

Example of processing one sample

| $X_1$ | $X_2$ | X <sub>3</sub> | Y |
|-------|-------|----------------|---|
| 1     | 0     | 1              | 1 |



## Delta training rule

 Based on squared error function for weight vector:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

Note that error is difference between correct output and <u>unthresholded</u> sum of inputs, a continuous quantity (rather than *binary* difference between correct output and thresholded output).

 Weights are modified by descending gradient of error function.

## Squared error function for weight vector w



Figure 5.20. Error surface  $E(w_1,w_2)$  for a two-parameter model.

#### **Gradient of error function**

#### Gradient:

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_d}\right]$$

Training rule for w:

$$\Delta \mathbf{w} = -\eta \nabla E(\mathbf{w})$$

Training rule for individual weight:

$$\Delta w_j = -\eta \frac{\partial E}{\partial w_j}$$

## Gradient of squared error function

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2} \frac{\partial}{\partial w_j} \sum_{i} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2} \sum_{i} 2(y_i - \hat{y}_i) \frac{\partial}{\partial w_j} (y_i - \hat{y}_i)$$

$$= \sum_{i} (y_i - \hat{y}_i) \frac{\partial}{\partial w_j} (y_i - \mathbf{w} \cdot \mathbf{x}_i)$$

$$\frac{\partial E}{\partial w_i} = \sum_{i} (y_i - \hat{y}_i) (-x_{ij})$$

## Delta training rule

- 1. Initialize weights with random values.
- 2. Do
  - a. Apply perceptron to each training sample i.
  - b. If sample *i* is misclassified, modify all weights *j*.

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$
  
where

 $y_i$  is target (correct) output for sample i (0 or 1)

 $\hat{y}_i$  is unthresholded perceptron output (continuous value)  $\eta$  is learning rate (a small constant)

3. Until all samples are correctly classified, or process converges.

#### Gradient descent: batch vs. incremental

- Incremental mode (illustrated on preceding slides)
  - Compute error and weight updates for a single sample.
  - Apply updates to weights before processing next sample.

#### Batch mode

- Compute errors and weight updates for a block of samples (maybe all samples).
- Apply all updates simultaneously to weights.

## Perceptron training rule vs. delta rule

- Perceptron training rule guaranteed to correctly classify all training samples if:
  - Samples are linearly separable.
  - Learning rate  $\eta$  is sufficiently small.
- Delta rule uses gradient descent. Guaranteed to converge to hypothesis with minimum squared error if:
  - Learning rate  $\eta$  is sufficiently small.

#### Even when:

- Training data contains noise.
- Training data not linearly separable.

### Equivalence of perceptron and linear models

#### Linear Regression of 0/1 Response





FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by  $x^T \hat{\beta} = 0.5$ . The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.