Classification Neural Networks 1

Neural networks

- Topics
 - Perceptrons
 - structure
 - training
 - expressiveness
 - Multilayer networks
 - possible structures
 - activation functions
 - training with gradient descent and backpropagation
 - expressiveness

Connectionist models

- Consider humans:
 - Neuron switching time ~ 0.001 second
 - Number of neurons ~ 10¹⁰
 - Connections per neuron ~ 10⁴⁻⁵
 - Scene recognition time ~ 0.1 second
 - 100 inference steps doesn't seem like enough
 - ⇒ Massively parallel computation

Neural networks

Properties:

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

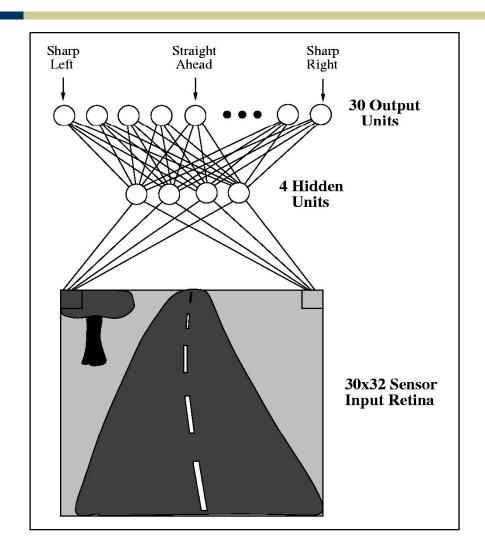
Neural network application

ALVINN: An Autonomous Land Vehicle In a Neural Network

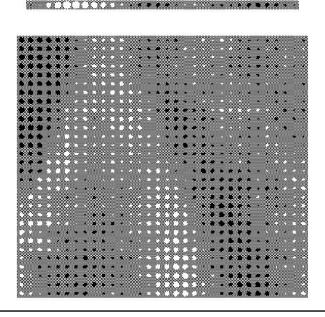
(Carnegie Mellon University Robotics Institute, 1989-1997)

ALVINN is a perception system which learns to control the NAVLAB vehicles by watching a person drive. ALVINN's architecture consists of a single hidden layer back-propagation network. The input layer of the network is a 30x32 unit two dimensional "retina" which receives input from the vehicles video camera. Each input unit is fully connected to a layer of five hidden units which are in turn fully connected to a layer of 30 output units. The output layer is a linear representation of the direction the vehicle should travel in order to keep the vehicle on the road.

Neural network application

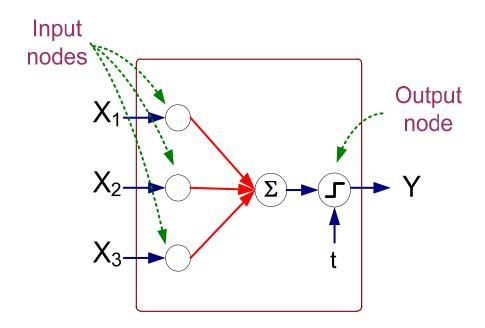


ALVINN drives 70 mph on highways!



Perceptron structure

- Model is an assembly of nodes connected by weighted links
- Output node sums up its input values according to the weights of their links
- Output node sum then compared against some threshold t

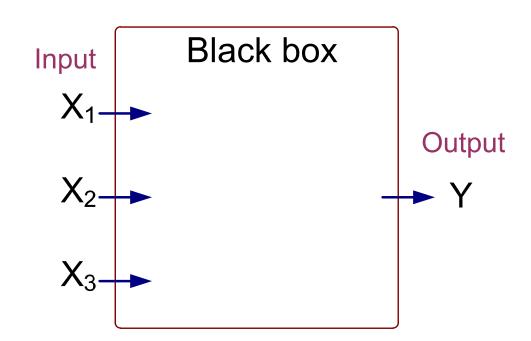


$$y = I(\sum_{j} w_{j} x_{j} - t) \quad \text{or} \quad$$

$$y = sign(\sum_{j} w_{j} x_{j} - t)$$

Example: modeling a Boolean function

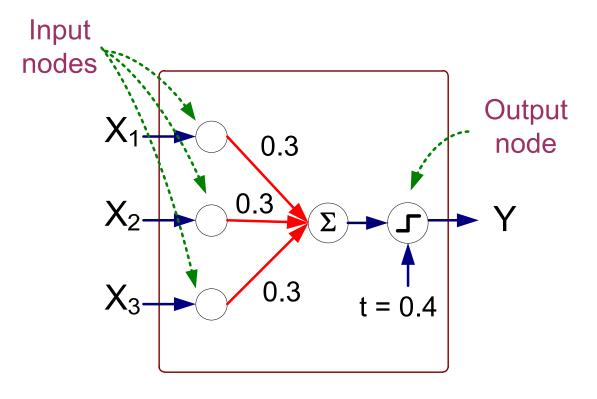
X ₁	X_2	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0



Output Y is 1 if at least two of the three inputs are equal to 1.

Perceptron model

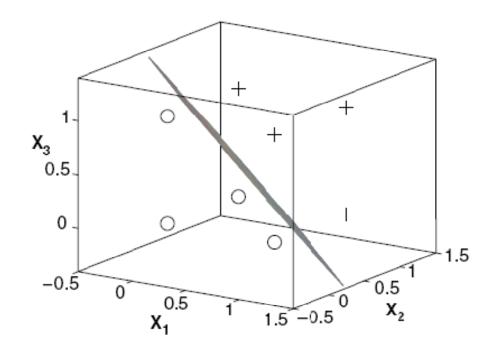
X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0



$$y = I(0.3x_1 + 0.3x_2 + 0.3x_3 > 0.4)$$
where
$$I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

Perceptron decision boundary

Perceptron decision boundaries are linear (hyperplanes in higher dimensions)

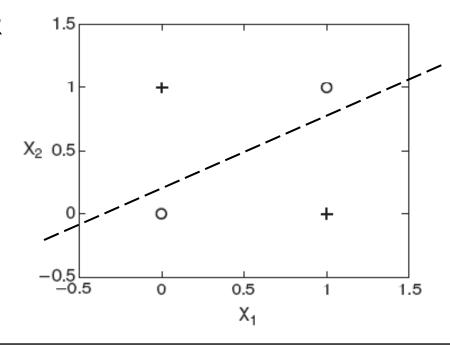


Example: decision surface for Boolean function on preceding slides

Expressiveness of perceptrons

- Can model any function where positive and negative examples are linearly separable
 - Examples: Boolean AND, OR, NAND, NOR
- Cannot (fully) model functions which are not linearly separable.
 - Example: Boolean XOR

X ₁	X ₂	у
0	0	-1
1	0	1
0	1	1
1	1	-1

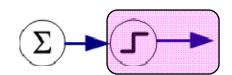


Perceptron training process

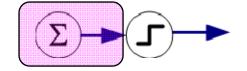
- 1. Initialize weights with random values.
- 2. Do
 - a. Apply perceptron to each training example.
 - b. If example is misclassified, modify weights.
- 3. Until all examples are correctly classified, or process has converged.

Perceptron training process

- Two rules for modifying weights during training:
 - Perceptron training rule
 - train on thresholded outputs



- driven by binary differences between correct and predicted outputs
- modify weights with incremental updates
- Delta rule
 - train on unthresholded outputs



- driven by continuous differences between correct and predicted outputs
- modify weights via gradient descent

Perceptron training rule

- 1. Initialize weights with random values.
- 2. Do
 - a. Apply perceptron to each training sample i.
 - b. If sample *i* is misclassified, modify all weights *j*.

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$

where

 y_i is target (correct) output for sample i (0 or 1)

 \hat{y}_i is thresholded perceptronoutput (0 or 1)

 η is learning rate (a small constant)

3. Until all samples are correctly classified.

Perceptron training rule

a. If sample *i* is misclassified, modify all weights *j*.

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$

where

 y_i is target (correct) output for sample i (0 or 1)

 \hat{y}_i is thresholded perceptron output (0 or 1)

 η is learning rate (a small constant)

Examples:

$$y_i = \hat{y}_i$$
 no update

$$y_i - \hat{y}_i = 1$$
; x_{ij} small, positive w_j increased by small amount

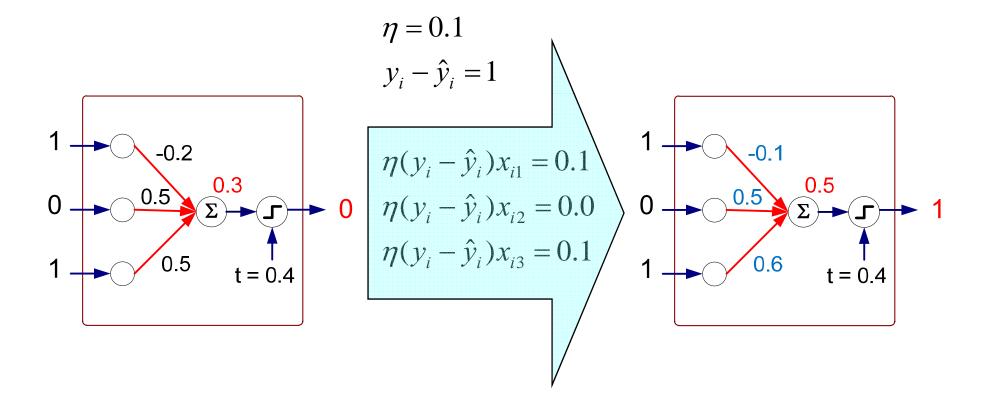
$$y_i - \hat{y}_i = 1$$
; x_{ij} large, negative w_j decreased by large amount

$$y_i - \hat{y}_i = -1$$
; x_{ij} large, negative w_j increased by large amount

Perceptron training rule

Example of processing one sample

X_1	X_2	X ₃	Y
1	0	1	1



Delta training rule

 Based on squared error function for weight vector:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

Note that error is difference between correct output and <u>unthresholded</u> sum of inputs, a continuous quantity (rather than *binary* difference between correct output and thresholded output).

 Weights are modified by descending gradient of error function.

Squared error function for weight vector w

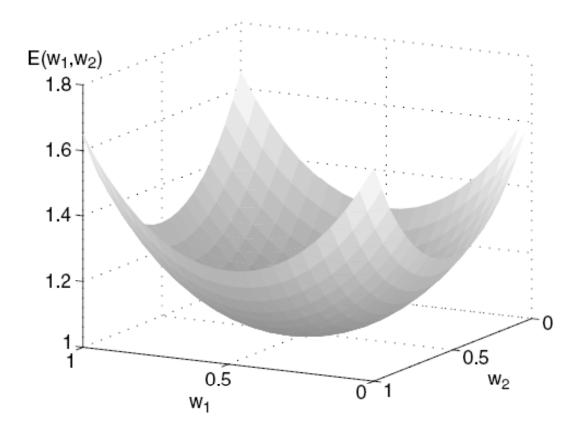


Figure 5.20. Error surface $E(w_1,w_2)$ for a two-parameter model.

Gradient of error function

Gradient:

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_d}\right]$$

Training rule for w:

$$\Delta \mathbf{w} = -\eta \nabla E(\mathbf{w})$$

Training rule for individual weight:

$$\Delta w_j = -\eta \frac{\partial E}{\partial w_j}$$

Gradient of squared error function

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2} \frac{\partial}{\partial w_j} \sum_{i} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2} \sum_{i} 2(y_i - \hat{y}_i) \frac{\partial}{\partial w_j} (y_i - \hat{y}_i)$$

$$= \sum_{i} (y_i - \hat{y}_i) \frac{\partial}{\partial w_j} (y_i - \mathbf{w} \cdot \mathbf{x}_i)$$

$$\frac{\partial E}{\partial w_i} = \sum_{i} (y_i - \hat{y}_i) (-x_{ij})$$

Delta training rule

- 1. Initialize weights with random values.
- 2. Do
 - a. Apply perceptron to each training sample i.
 - b. If sample *i* is misclassified, modify all weights *j*.

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$

where

 y_i is target (correct) output for sample i (0 or 1)

 \hat{y}_i is unthresholded perceptron output (continuous value) η is learning rate (a small constant)

3. Until all samples are correctly classified, or process converges.

Gradient descent: batch vs. incremental

- Incremental mode (illustrated on preceding slides)
 - Compute error and weight updates for a single sample.
 - Apply updates to weights before processing next sample.

Batch mode

- Compute errors and weight updates for a block of samples (maybe all samples).
- Apply all updates simultaneously to weights.

Perceptron training rule vs. delta rule

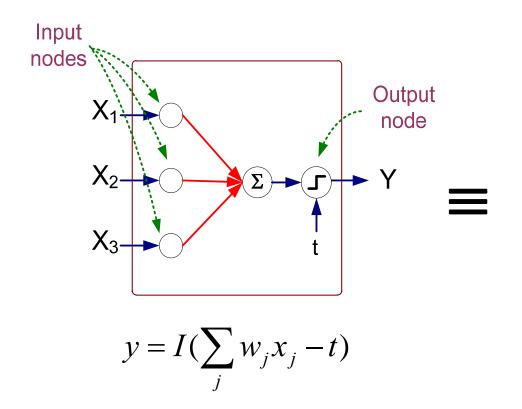
- Perceptron training rule guaranteed to correctly classify all training samples if:
 - Samples are linearly separable.
 - Learning rate η is sufficiently small.
- Delta rule uses gradient descent. Guaranteed to converge to hypothesis with minimum squared error if:
 - Learning rate η is sufficiently small.

Even when:

- Training data contains noise.
- Training data not linearly separable.

Equivalence of perceptron and linear models

Linear Regression of 0/1 Response



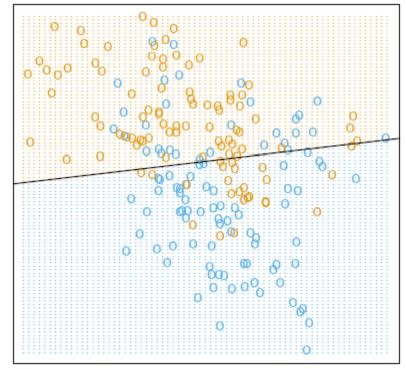


FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.