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Support Vector MachinesSuppo ec o ac es
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Support vector machines

Topics
– SVM classifiers for linearly separable classes– SVM classifiers for linearly separable classes
– SVM classifiers for non-linearly separable 

classesclasses
– SVM classifiers for nonlinear decision 

boundariesboundaries
kernel functions

– Other applications of SVMsOther applications of SVMs
– Software
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Support vector machines

Linearly
separable
classes

Goal: find a linear decision boundary (hyperplane)
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Goal: find a linear decision boundary (hyperplane)
that separates the classes



Support vector machines

O ibl l ti
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One possible solution



Support vector machines

A th ibl l ti
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Another possible solution



Support vector machines

Oth ibl l ti
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Other possible solutions



Support vector machines

Whi h i b tt ? B1 B2? H d d fi b tt ?
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Which one is better? B1 or B2? How do you define better?



Support vector machines

Hyperplane that maximizes the margin will have better generalization
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Hyperplane that maximizes the margin will have better generalization
=> B1 is better than B2



Support vector machines
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Hyperplane that maximizes the margin will have better generalization
=> B1 is better than B2



Support vector machines
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Support vector machines

We want to maximize:
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– This is a constrained convex optimization problem
– Solve with numerical approaches, e.g. quadratic

⎩
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Solve with numerical approaches, e.g. quadratic 
programming



Support vector machines

Solving for w that gives maximum margin:
1 Combine objective function and constraints into new1. Combine objective function and constraints into new 

objective function, using Lagrange multipliers λi
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Support vector machines

Solving for w that gives maximum margin:
3 Substituting and rearranging gives the dual of the3. Substituting and rearranging gives the dual of the 

Lagrangian:
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which we try to maximize (not minimize).
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4. Once we have the λi, we can substitute into previous 
equations to get w and b.

5 This defines w and b as linear combinations of the5. This defines w and b as linear combinations of the 
training data.
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Support vector machines

Optimizing the dual is easier.
– Function of λi only, not λi and w.i y, i

Convex optimization ⇒ guaranteed to find global 
optimum.
Most of the λi go to zero.
– The xi for which λi ≠ 0 are called the support vectors.  i i

These “support” (lie on) the margin boundaries.
– The xi for which λi = 0 lie away from the margin 

boundaries They are not required for defining theboundaries.  They are not required for defining the 
maximum margin hyperplane. 
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Support vector machines

Example of solving for maximum margin hyperplane
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Support vector machines

What if the classes are not linearly separable?
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Support vector machines
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Now which one is better? B1 or B2? How do you define better?



Support vector machines

What if the problem is not linearly separable?
Solution: introduce slack variablesSolution: introduce slack variables
– Need to minimize:
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– C is an important hyperparameter, whose value is 
usually optimized by cross-validation.
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Support vector machines
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Slack variables for nonseparable data



Support vector machines

What if decision boundary is not linear?
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Support vector machines

Solution: nonlinear transform of attributes
])(,[],[: 4

21121 xxxxx +→Φ
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Support vector machines

Solution: nonlinear transform of attributes
)](),[(],[: 2
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Support vector machines

Issues with finding useful nonlinear transforms
– Not feasible to do manually as number of attributesNot feasible to do manually as number of attributes 

grows (i.e. any real world problem)
– Usually involves transformation to higher dimensional 

space
increases computational burden of SVM optimization
curse of dimensionalitycurse of dimensionality

With SVMs can circumvent all the above via theWith SVMs, can circumvent all the above via the 
kernel trick
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Support vector machines

Kernel trick
– Don’t need to specify the attribute transform Φ( x )Don t need to specify the attribute transform Φ( x )
– Only need to know how to calculate the dot product of 

any two transformed samples:
k( x1, x2 ) = Φ( x1 ) ⋅ Φ( x2 )

– The kernel function k is substituted into the dual of the 
L i ll i d t i ti f iLagrangian, allowing determination of a maximum 
margin hyperplane in the (implicitly) transformed 
space Φ( x )

– All subsequent calculations, including predictions on 
test samples, are done using the kernel in place of
Φ( x ) Φ( x )
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Φ( x1 ) ⋅ Φ( x2 )



Support vector machines

Common kernel functions for SVM

– linear ),( 2121k ⋅= xxxx

– polynomial

( )

) (),( 2121 ck d+⋅= xxxx γ

– Gaussian or radial basis ( )exp),( 2
2121k −−= xxxx γ

– sigmoid )tanh(),( 2121 ck +⋅= xxxx γ
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Support vector machines

For some kernels (e g Gaussian) the implicitFor some kernels (e.g. Gaussian) the implicit 
transform Φ( x ) is infinite-dimensional!
– But calculations with kernel are done in originalBut calculations with kernel are done in original 

space, so computational burden and curse of 
dimensionality aren’t a problem.
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Support vector machines
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Support vector machines

Applications of SVMs to machine learning
– Classification– Classification

binary
multiclassmulticlass
one-class

– RegressionRegression
– Transduction (semi-supervised learning)
– RankingRanking
– Clustering

Structured labels
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– Structured labels



Support vector machines

Software

– SVMlight

http://svmlight joachims org/http://svmlight.joachims.org/

– libSVM– libSVM
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
includes MATLAB / Octave interfaceincludes MATLAB / Octave interface
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