Machine Learning
Dimensionality Reduction
slides thanks to Xiaoli Fern (CS534, Oregon State Univ., 2011)
Jeff Howbert Introduction to Machine Learning Winter 2012 1




Dimensionality reduction

e Many modern data domains involve huge
numbers of features / dimensions

— Documents: thousands of words, millions of bigrams
— Images: thousands to millions of pixels

— Genomics: thousands of genes, millions of DNA
polymorphisms
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Why reduce dimensions?

e High dimensionality has many costs

— Redundant and irrelevant features degrade
performance of some ML algorithms

— Difficulty In interpretation and visualization

— Computation may become infeasible
+ what if your algorithm scales as O( n3)?

— Curse of dimensionality
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Extract Latent Linear Features

Linearly project n-d data onto a k-d space
— e.g., project space of 104 words into 3-dimensions

There are infinitely many k-d subspaces that we
can project the data into, which one should we
choose

This depends on the task at hand

— If supervised learning, we would like to maximize the
separation among classes: Linear discriminant analysis
(LDA)

— If unsupervised, we would like to retain as much data
variance as possible: principal component analysis
(PCA)



L DA for two classes
W= Si;l(ml_mz)

* Projecting data onto one dimension that
maximizes the ratio of between-class scatter and
total within-class scatter
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Unsupervised Dimension
Reduction

 Consider data without class labels

* Try to find a more compact representation
of the data

« Assume that the high dimensional
data actually resides in a inherent
low-dimensional space

« Additional dimensions are just
random noise

« (Goal is to recover these inherent
dimensions and discard noise
dimensions




Geometric picture of principal
components (PCs)

Goal: to account for the variation in the data in as few
dimensions as possible




Geometric picture of principal
components (PCs)
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« The 1st PC is the projection direction that maximizes the
variance of the projected data

« The 2nd PC Is the projection direction that is orthogonal
to the 1st PC and maximizes the variance



Conceptual Algorithm

 Find a line such that when the data is
projected onto that line, it has the
maximum variance
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Conceptual Algorithm

* FInd a new line, orthogonal to the first, that
has maximum projected variance:




Repeat until /m lines

« The projected position of a point on these lines

gives the coordinates in the m-dimensional

reduced space
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Steps In principal component analysis

e Mean center the data
e Compute covariance matrix

e Calculate eigenvalues and eigenvectors of X

— Eigenvector with largest eigenvalue A, is 15t principal
component (PC)

— Eigenvector with k" largest eigenvalue A4, is k" PC
— A 1 = A, = proportion of variance captured by kth PC
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Applying a principal component analysis

e Full set of PCs comprise a new orthogonal basis for
feature space, whose axes are aligned with the maximum
variances of original data.

e Projection of original data onto first k PCs gives a reduced
dimensionality representation of the data.

e Transforming reduced dimensionality projection back into
original space gives a reduced dimensionality
reconstruction of the original data.

e Reconstruction will have some error, but it can be small
and often is acceptable given the other benefits of
dimensionality reduction.
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PCA example
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PCA example
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Dimension Reduction Using PCA

Calculate the covariance matrix of the data S

Calculate the eigen-vectors/eigen-values of S

Rank the eigen-values in decreasing order

Select eigen-vectors that retain a fixed percentage of the

d '
variance, (e.g., 80%, the smallest d such that % > 80%)
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Choosing the dimension k&

e The eigenvectors (columns of ®) form a basis

e We can look at the expansion
k
X = [ix +Z(¢}?){)¢bj.
Jj=1

and examine the residual ||x — x||

Input x [ix = = : = k= 100
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Example: Face Recognition

« An typical image of size 256 x 128 is described
by n = 256x128 = 32768 dimensions

« Each face image lies somewhere in this high-
dimensional space

« |mages of faces are generally similar in overall
configuration, thus

— They cannot be randomly distributed in this space

— We should be able to describe them in a much low-
dimensional space



PCA for Face Images:

Database of 128
carefully-aligned faces.

Here are the mean and
the first 15 eigenvectors.

Each eigenvector can be
shown as an image

These images are face-
like, thus called
eigenface

—igenfaces




Face Recognition in Eigenface space
(Turk and Pentland 1991)

« Nearest Neighbor classifier in the eigenface
space

« Training set always contains 16 face images of
16 people, all taken under the same conditions
of lighting, head orientation, and image size

« Accuracy:
— variation in lighting: 96%
— variation in orientation: 85%
— variation in image size: 64%



Face Image Retrieval

L

+ Left-top image is the
query image
« Return 15 nearest

neighbor in the
elgenface space

+ Able to find the same
person despite
— different expressions

— variations such as
glasses

LY




PCA: a useful preprocessing step

e Helps reduce computational complexity.

e Can help supervised learning.
— Reduced dimension = simpler hypothesis space.
— Smaller VC dimension = less risk of overfitting.
e PCA can also be seen as noise reduction.

e Caveats:
— Falls when data consists of multiple separate clusters.

— Directions of greatest variance may not be most
Informative (i.e. greatest classification power).
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Practical Issue: Scaling Up

» Covariance of the image data is BIG!
—size of 2 =32768 x 32768
— finding eigenvector of such a matrix is slow.

« SVD comes to rescuel!

— Can be used to compute principal
components

— Efficient implementations available, e.g.,
Matlab svd



Singular Value Decomposition: X=USVT

X U S vr
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Singular Value Decomposition: X=USVT

X U S vr
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SVD for PCA

Create centered data matrix X
Solve SVD: X = USVT

Columns of V are the eigenvectors of X sorted from
largest to smallest eigenvalues — select the first k
columns as our principal components




Nonlinear Methods

« Data often lies on or near a nonlinear
low-dimensional curve

 We call such low dimension structure
manifolds

A

‘ Swiss roll data




ISOMAP: Isometric Feature Mapping

(Tenenbaum et al. 2000)

« A nonlinear method for dimensionality reduction

« Preserves the global, nonlinear geometry of the data by
preserving the geodesic distances

« (Geodesic: originally geodesic means the shortest route
between two points on the surface of the manifold




ISOMAP

« Two steps

1.

Approximate the geodesic distance between every
pair of points in the data
» The manifold is locally linear

» Euclidean distance works well for points that are close
enough

» For the points that are far apart, their geodesic distance can
be approximated by summing up local Euclidean distances

Find a Euclidean mapping of the data that preserves
the geodesic distance



GGeodesic Distance

« Construct a graph by
— Connecting i and j if
* d(l, ) < & (e-iIsomap) or
* 1 1S one of |'s k nearest neighbors (k-isomap)
— Set the edge weight equal d(i, ) — Euclidean
distance
« Compute the Geodesic distance between
any two points as the shortest path
distance



Compute the Low-Dimensional Mapping

 We can use Multi-Dimensional scaling (MDS), a
class of statistical techniques that

Given:
n X n matrix of dissimilarities between n objects

Outputs: a coordinate configuration of the data in
a low-dimensional space R? whose Euclidean
distances closely match given dissimilarities.



Roll Data
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ISOMAP on Sw




ISOMAP Examples
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Off-the-shelf classifiers

Per Tom Dietterich:

“Methods that can be applied directly to data
without requiring a great deal of time-consuming
data preprocessing or careful tuning of the
learning procedure.”
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Off-the-shelf criteria

Criterion Logistic

Mixed data no
Missing values

Outhers

Monotone transforms

Scalability

Irelevant inputs

Linear combinations

Interpretable

Accurate

slide thanks to Tom Dietterich (CS534, Oregon State Univ., 2005)
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Practical advice on machine learning

from Andrew Ng at Stanford

slides:
http://cs229.stanford.edu/materials/ML-advice.pdf

video:

http://www.youtube.com/v/sQ8T9b-uGVE
(starting at 24:56)
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