
Lecture Notes 2 – Software engineering, C++
CSS 501 – Data Structures and Object-Oriented Programming – Professor Clark F. Olson

Reading for this lecture: Carrano, Chapter 3, C++ Interlude 1

Software engineering principles
Let’s start by discussing some of the fundamental principles that are useful in building complex computer programs

and that form the basis for software engineering. Software engineering is a branch of computer science that provides

techniques to facilitate the development of computer programs (one textbook definition). It defines the process by

which programs are designed, coded, tested, and maintained (among other steps). Rather than just starting coding at

some arbitrary point, a problem solving approach is used for the developing programs to accomplish some goal.

The Life Cycle of Software
While you may have (so far) written only simple programs (for example, for courses) that were discarded once it

demonstrated that you could use certain skills, good software undergoes continuing process that is called its life

cycle. One version of this life cycle consists of:

1. Specification: You must first understand exactly what the problem is that you are solving. You may get

an initial program specification from a customer or non-technical person, so it may at first be imprecise.

Specification requires that you have a complete understanding of many issues including: what the input

data is, what types of data are valid, what sort of interface the program will have, what input errors

need to be detected, what assumptions are made, what special cases need to be handled, what is the

output, what will be documented, what changes might be made after completion, etc. Note that the

specification should not include the method of solving the problem.

2. Design: After you know exactly what problem is to be solved, a solution to the problem can be designed,

encompassing both algorithms and abstract data types. For large programs, this is usually broken down

into well-defined smaller problems that can be solved using modules that are reusable and (somewhat)

independent. (For example, a sorting routine can be used by many programs but, aside from the interface,

is independent of them.) A module can be a single function or a group of functions. The input, output,

purpose, and assumptions of each module should be specified. The design should be independent of the

implementation.

3. Risk analysis: All software projects have some risk, at least in terms of cost and schedule. Many have

additional risks (for example, software to control a power plant). This course will not discuss risk analysis

in detail, but you may see it more in a future course.

4. Verification: It is possible, in some cases, to prove that an algorithm is correct. For example, loop

invariants can be used to prove that a loop performs the correct operation.

Example:

/* Code fragment to sum the items in a list */

int sum = 0;

int j = 0;

while (j < n)

{

sum += item[j];

 j++;

}

Loop invariant: sum is the sum of elements item[0] through item[j-1]

To prove the correctness of the loop, you have to show that:

 The invariant must be true initially (this is a pre-condition)

 Execution of the loop preserves the invariant

 The invariant captures the correctness of the algorithm

 The loop must terminate

5. Coding: In this phase, the algorithm and abstract data types are translated into a particular

programming language. When software is well designed, this is a small part of the software life cycle.

6. Testing: This phase is used to detect as many errors in the design and coding as possible. While the

program should be tested as a whole, each module should also be tested separately, if possible, using

valid data for which the correct result is known. Testing should encompass as many special cases as

possible, including invalid input, unless the specification allows the assumption of valid input.

7. Refining: You now have a working program. What refinements are necessary? Maybe your initial design

accomplished everything the customer needed, but not everything that customer wanted. Sometimes a

good design strategy is to make simplify the problem, solve the simple problem, and later add refinements

to remove the simplifications. However, care must be taken to ensure that the refinements do not require

completely redesigning the system.

8. Production: This phase includes distribution, installation, and use of the software. We will not discuss

this phase in detail.

9. Maintenance: Once the software is in use, people will find bugs, suggest changes, and ask for new

features.

The software life cycle is usually drawn as a wheel with nine spokes. Note that documentation forms the center of

wheel, since it is a key aspect of all phases of the software life cycle. This is one of the most important aspects of

software. For large programs, different people are often responsible for different parts of the life cycle and

documentation is crucial to understanding the phases that other people have worked on. Even if you are the only

person who will ever use a program (unlikely, except for trivial programs), when you come back to it a week, a

month, or a year later, will you remember the specifications, the design details, or other steps? Document each

phase so that you don’t need to!

Each function should have a set of pre-conditions specifying the conditions that must exist at the beginning of the

function, and a set of post-conditions that specify the conditions after the function has completed.

Example:

 // sort: function to sort an array of integers

 // preconditions: n is the number of values to sort and is no less than zero.

 // array has been allocated and holds at least n integers.

 // postconditions: the first n values of array are sorted into non-decreasing order.

 // specifically array[i] <= array[i+1] for 0 <= i < n-1

 void sort(int n, int array[])

This is the kind of documentation that I want to see in this class. Each of the function parameters (including return

values) should be mentioned in documentation. Note that the preconditions and postconditions say nothing about

how the sorting is achieved. For a complex function, you should also say something about how the function works

and include comments inside the function for each code block.

C++ concepts
See the C++ notes linked on the course web site:

http://courses.washington.edu/css342/zander/css332/

In particular, the following pages:

C/C++ data types, basic operators, and control structures

Defining consts

C++ I/O

C++ functions and pass by value vs. pass by reference

Arrays as parameters to functions

For next lecture:

The Rational class header file

The Rational class .cpp

Using Rational objects, sample driver

http://courses.washington.edu/css342/zander/css332/
http://courses.washington.edu/css342/zander/css332/datatypes.html
http://courses.washington.edu/css342/zander/css332/consts.html
http://courses.washington.edu/css342/zander/css332/io.html
http://courses.washington.edu/css342/zander/css332/passby.html
http://courses.washington.edu/css342/zander/css332/arrayparam.html
http://courses.washington.edu/css342/zander/css332/rath.html
http://courses.washington.edu/css342/zander/css332/ratcpp.html
http://courses.washington.edu/css342/zander/css332/ratdriver.html

