
Lecture Notes 4 – More C++ and recursion 
CSS 501 – Data Structures and Object-Oriented Programming – Professor Clark F. Olson 

 

Reading for this lecture: Carrano, Chapter 2 

     

Copy constructor, destructor, operator= 
The compiler will provide a default copy constructor, destructor, and operator= if you don’t define them. This is fine 

as long as there are no pointer variables in the private data that use dynamic memory allocation. The image library 

that I have made available uses dynamic memory allocation. So, when you are writing your new image class, you 

will need to implement these operations. The copy constructor and destructor should be straightforward. (You can 

use the functions in ImageLib!) The only tricky part is in operator=, it is important that you check for self-

assignment. Consider this example for an arbitrary class: 

 
   const someClass & someClass::operator=(const someClass &input) {  

    if (this != &input) { // necessary since deallocation will 

      // destroy input if they are the same! 

  // deallocate memory for “this” here 

  // then copy input into “this” 

    } 

    return *this; 

   } 

 

Note that the copy constructor must also take a const & parameter, since otherwise the copy constructor would be 

needed to pass the parameter by value! (The copy constructor is used for three cases, call by value, return by value, 

and declaration with initialization, such as Object a = b.)  

 

Usually, these three methods should be written first (if you are using dynamic memory), since they are called 

automatically in some cases. Otherwise, this may cause your code to crash. The signature for the copy constructor 

and destructor looks like this: 
 someClass::someClass(const someClass &input) { 

  // copy from input to “this” here 

} 

 

someClass::~someClass() { 

 // deallocate memory allocated to object here 

} 

 

 

 

Templates 
In many cases, we would like to write a function so that it would apply to many different classes of objects. 

Examples include min(a, b) , swap(a, b) or sort(array, n). Here is a simple example of min: 

 
 template <typename Comparable>  

 Comparable min(Comparable a, Comparable b) { 

  if (a < b) return a; 

  else return b; 

 } 

or 
 template <typename Comparable> 

 const Comparable &min(const Comparable &a, const Comparable &b) { 

  if (a < b) return a; 

  else return b; 

 } 

 

 

  



See the Complex number class on the course website for a template class example: 

Complex.h 

Complex.cpp 

ComplexDriver.cpp 

 

Note that templates are difficult to handle for compilers, since they are compiled on demand. The declaration and 

definition need to be compiled at the same time. This does not mean that they need to be in the same file. Using a 

#include to include the implementation file at the end of the header file is one option. None of your programming 

projects this quarter will require you to write a template class (this would be tricky, in fact). 

 

 

Recursion 
You should have been introduced to recursion in your previous courses. Here is a quick recap: 

Recursion is a fundamental technique for writing programs. The basic idea is break the problem into easier 

problems of the same general type. Note that there are two distinct parts to recursive functions: 

1. The base case. This part does not call itself. It handles a simple case that we know how to do without 

breaking the problem down into a simpler problem. In this case, it handles the case where there are no 

numbers to add. 

2. The recursive case. This part breaks the problem into a simpler version of the original problem. This 

part makes (at least) one recursive call to itself. In this case, it adds all of the numbers, except the last one. 

 

 

The factorial function 
The factorial function is a common function that can illustrate recursion. The factorial function is: 

F(n) = n * (n – 1) * (n – 2) * … * 2 * 1 (for any integer n > 0) 

F(1) = 1 

 

We can write a simple (non-recursive) function to compute factorial: 

 

 // Computes the factorial of n, if n > 0. Otherwise, returns 1. 
 int factorial(int n) { 
  int result = 1; 
 
  for (int i = 1; i <= n; i++) 
   result = result * i; 
  return result; 

 } 
 

Note that we can also write: F(n) = n * F(n-1)  (for n > 1). Since this defines the function in terms of a simpler 

version of the problem, we can use recursion to compute factorial: 

 

 // Computes the factorial of n, if n > 0. Otherwise, returns 1. 
int factorial(int n) { 

  if (n <= 1) return 1; 
  else return n * factorial(n – 1); 
 } 
 

Let’s compare the two versions: 

 The iterative version has two local variables; the recursive version has none. 

 The iterative version requires more lines of code than the iterative version. 

 The iterative version is more difficult to understand (arguably). 

 

The recursive version is simpler, because the computer is doing more of the work. The recursive version may 

require more memory (if the compiler is not smart enough to optimize the code) and it may take slightly longer 

(owing to function calling overhead), but these are not overriding factors. If you write your code using an efficient 

algorithm and, after it is working properly, find that the speed is not acceptable, then you can worry about 

optimization. 

http://courses.washington.edu/css501/cfolson/Code/Complex.h
http://courses.washington.edu/css501/cfolson/Code/Complex.cpp
http://courses.washington.edu/css501/cfolson/Code/ComplexDriver.cpp


 

Ensuring that recursion works 
Recursion is similar to induction (we’ll discuss this shortly) in that you assume that a simpler problem (the recursive 

call) is solved correctly and then you use this assumption to solve the complete problem. One of the most difficult 

aspects of recursion is accepting that the recursive call will do the right thing. Here is a checklist of conditions that 

must be true for the recursion to work. If they are all true, then you should feel confident that you function will work 

correctly 

 

1. A recursive function must have at least one base case and at least one recursive call (it’s OK to have 

more than one). 

2. The test for the base case must execute before the recursive function call. 

3. The problem must be broken down so that the recursive function call is closer to the base case than the 

original function call. (In theory, it is possible to get closer to the base case at each step, but never to reach 

it. This is quite rare in practice.) 

4. The recursive call must not skip over the base case. 

5. The non-recursive portions of the function must operate correctly (assuming that the recursive call 

operates correctly). 

 

Let’s go back to our recursive factorial function and see if it meets these criteria. 

 

1. There is a base case (n <= 1) and a recursive case (n > 1). 

2. If we reach the recursive call, then we must have evaluated whether (n <= 1), so we always test for the base 

case. 

3. The recursive call is factorial(n – 1). If n > 1, then n – 1 is closer to the base case (n <= 1). Otherwise, we 

are in the base case. Note that if our base case was (n == 1), the recursive call would not necessarily get 

closer to the base case. The function will not work properly for negative numbers. Usually, you should use 

a base case that catches problems such as this. 

4. Since n is an integer, and the recursive call reduces n by one, it is not possible to skip over the recursive 

case. 

5. Assuming the recursive call works correctly, does the rest of the function operate correctly? Compare the 

code with the definition of factorial that says n! = n * (n – 1)! for n > 0 and n! = 1 for n = 1. When n is 1, 

the code correctly returns 1. When n is greater than zero, the code returns n * factorial(n – 1), which is just 

what the definition says. The non-recursive portions of the function thus behave correctly. 

 

The towers of Hanoi 
There is a classic problem called “the towers of Hanoi” that can be solved very simply using recursion, even though 

it seems difficult. The problem can be stated as follows:  

 There are three tall, thin towers: A, B, and C. 

 There are n large disks with holes in the center, so that they can fit on towers. 

 Each disk is a different size and can only be placed on top of a larger disk. 

 All of the disks start on tower A. 

 Only one disk can be moved at a time. 

 The goal is to put all of the disks on tower C using tower B as a spare. 

 

This problem seems difficult at first glance (and it is difficult to solve without recursion), but it can be solved very 

elegantly using recursion. First, let’s look at how the problem can be broken down into simpler problems of a 

similar nature. A simpler problem would be to move fewer disks than in the original problem. What if we moved 

half of the disks? What would be our next step? We have nowhere to go from there, because the new problem can’t 

be solved like the old problem (there is no spare tower to work with). How about moving all but one of the disks? 

At that point, we could move the largest disk. We can also move the other disks after moving the largest disk, since 

the pole with the largest disk can be used as a spare tower. This leads to the following procedure: move all but the 

largest disk onto the spare tower (using a recursive call), move the largest disk onto goal tower, and then 

move all of the other disks onto the goal tower (using another recursive call). Believe it or not, with a simple 

base case, this solves the entire problem! 

 

  



To solve the problem, we will assume that we already have classes corresponding to towers and disks with the 

following interface: 

 disk: 

No methods needed. 

 

tower: 

 disk removeTopDisk() 

 bool addDiskToTop(disk diskAdded) // Returns false if new disk is too big to be added 

 

// Recursive algorithm that solves the towers of Hanoi problem. 
 // Pre-conditions:   Source has at least n disks on it. 
 //   Destination and spare are either empty or they hold only 

//   disks that are larger than the top n disks on source. 
// Post-conditions: The top n disks on source have been moved to destination. 
//   Disks that start on destination or spare are not moved. 

 void hanoi(int n, tower &source, tower &destination, tower &spare) 
 { 
  if (n > 0) 
  { 
   hanoi(n – 1, source, spare, destination); 
   disk diskToMove = source.removeTopDisk(); 
   destination.addDiskToTop(diskToMove); 
   hanoi(n – 1, spare, destination, source); 
  } 
 } 
    

Believe it or not, that solves the entire problem!  

 

A java applet that demonstrates the solution can be found at: 

http://www.cut-the-knot.org/recurrence/hanoi.shtml  

 

Here is a trace the algorithm for n = 4: 

 hanoi(4, A, B, C); 

  hanoi(3, A, C, B); 

   hanoi(2, A, B, C) 

    hanoi(1, A, C, B) 

     Move disk from a to c 

    Move disk from a to b 

    hanoi(1, C, B, A) 

     Move disk from c to b 

   Move disk from a to c 

   hanoi(2, B, C, A) 

    hanoi(1, B, A, C) 

     Move disk from b to a 

    Move disk from b to c 

    hanoi(1, A, C, B) 

     Move disk from a to c 

  Move disk from a to b 

hanoi(3, C, B, A); 

   hanoi(2, C, A, B) 

    hanoi(1, C, B, A) 

     Move disk from c to b 

    Move disk from c to a 

    hanoi(1, B, A, C) 

     Move disk from b to a 

   Move disk from c to b 

   hanoi(2, A, B, C) 

    hanoi(1, A, C, B) 

http://www.cut-the-knot.org/recurrence/hanoi.shtml


     Move disk from a to c 

    Move disk from a to b 

    hanoi(1, C, B, A) 

     Move disk from c to b 

 

How do we know that the pre-conditions are never violated? We need induction to prove this, so you’ll have to trust 

me for now. 

  

The cost of the towers of Hanoi 
An interesting question is: given n, how many moves does it take to solve the towers of Hanoi problem using the 

above algorithm. The number of moves is given by the following recurrence relation: 

 

moves(n) = moves(n – 1) + 1 + moves(n – 1) = 2 * moves(n – 1) + 1 

moves(1) = 1 

For example: moves(3) = 2 * moves(2) + 1 = 2 * (2 * moves(1) + 1) + 1 = 2 * (2 * 1 + 1) + 1 = 7 

 

It can be observed (and proven using induction) that moves(n) = 2n – 1. 

 

Survivor (21 flags) 
One season on an episode of Survivor, the immunity challenge involved an intelligence test where the teams played 

a game against each other called 21 flags. At the start of the game, there are 21 flags in a designated location. The 

two teams take turns removing 1, 2, or 3 flags from the game. The winning team is the team to remove the last flag. 

Interestingly, if the first team knows the optimal strategy, they can guarantee that they win the game. The solution 

can be seen using recursive (and logical) reasoning. 

 

First, let’s think of the base case. At what position can you guarantee that you can win the game? If there are 1, 2, or 

3 flags left, you win. Now, how can you put the other team in a position such that they must leave you with 1, 2, or 3 

flags. The only case that guarantees this is if they have 4 flags during their turn. If you can leave them with exactly 4 

flags, then you win. From here, we need to devise a way to leave the opponent with exactly four flags. The key is to 

see that this is exactly like trying to leave the opponent with 0 flags (winning the game). If they have exactly 8 flags 

on their turn, then you can leave them with exactly 4 flags on their next turn, and then win. This same situation 

applies at each step – you want to leave you opponent with a number of flags that is a multiple of 4 every time. If 

you go first, you remove 1 flag, leaving the opponent with 20. No matter how many flags your opponents takes, you 

leave them with 16, then 8, then 4, then 0, and you win no matter what they do. 

 

The Fibonacci sequence 
There is a famous sequence of numbers called the Fibonacci sequence. The textbook describes it in terms of 

breeding rabbits using the following assumptions: 

 Rabbits never die. 

 A rabbit is able to reproduce when it is two months old. 

 Rabbits are always born in male-female pairs. 

 Each month, every pair of rabbits that is able to reproduce gives birth to one male-female pair. 

 

Starting with a single pair of newborn rabbits, how many rabbits are there after 3 months? 6 months? n months? 

 

Month 1: 1 pair 

Month 2: 1 pair (not old enough to reproduce) 

Month 3: 2 pairs (the first pair reproduced) 

Month 4: 3 pairs (the first pair reproduced, but the new pair was not old enough) 

Month 5: 5 pairs 

Month 6: 8 pairs 

Month n: number at month n – 1 plus number at month n –2 

 

The Fibonacci sequence is usually defined as F(n) = F(n – 1) + F(n – 2), where F(0) = 0 and F(1) = 1. (Definitions 

sometimes vary in whether the first term is 0 or 1, but this only changes the indexes by one.) 

 

We can compute the number of rabbits at any month using a recursive function: 



 // Computes the Fibonacci sequence 
 int fib(int n) { 
  if (n < 1) return 0; 
  if (n == 1) return 1; 
  return fib(n – 1) + fib(n – 2); 
 } 
 

This procedure uses two recursive calls unless the base case is reached. This means that a trace of the procedure 

calls for an example like fib(6) will branch like a tree. This is not an efficient solution for this problem. An iterative 

solution can solve it much faster for large numbers. This is an example of a problem for which a recursive solution 

is the easiest to write, but it is not the best solution. It is possible to write an efficient recursive solution to this 

problem. The key is that it has only one recursive call.   

 

Trace of fib(6): 

fib(6) = 

(fib(5) + fib(4)) = 

((fib(4) + fib(3)) + (fib(3) + fib(2))) = 

(((fib(3) + fib(2)) + (fib(2) + fib(1))) + ((fib(2) + fib(1)) + 1)) = 

((((fib(2) + fib(1)) + 1) + (1 + 1)) + ((1 + 1) + 1)) = 

((((1 + 1) + 1) + (1 + 1)) + ((1 + 1) + 1)) = 

8 

 

Fibonacci sequence revisited 
The easy method of writing the Fibonacci sequence is not efficient, since we need to make two recursive calls each 

time through the function. We can write an efficient recursive function if we count up, instead of down:  

 int fib(int n, int result = 1, int prev = 0) 
 { 
 if (n<=0) return prev; 
 if (n==1) return result; 
 else return fib(n – 1, prev + result, result); 
 } 
 
Here’s what a trace of fib(6) looks like: 

 fib(6) = 
 fib(5, 1, 1) = 
 fib(4, 2, 1) = 
 fib(3, 3, 2) = 
 fib(2, 5, 3) = 
 fib(1, 8, 5) = 
 8 
 

There is actually a closed-form solution for the Fibonacci sequence: 

 

𝑭(𝒏) =
𝟏

√𝟓
 ((

𝟏 + √𝟓

𝟐
)

𝒏

− (
𝟏 − √𝟓

𝟐
)

𝒏

) 

 

Practice problems (optional): 
Carrano, Chapter 2: 

 4, 7, 9, 10, 11, 13, 18 

 


