
172 Chapter 4 Linked Lists

4.1 Preliminaries
The ADT list, as described in the previous chapter, has operations to insert,
delete, and retrieve items, given their positions within the list. A close examina-
tion of the array-based implementation of the ADT list reveals that an array is
not always the best data structure to use to maintain a collection of data. An
array has a fixed size-at least in most commonly used programming lan-
guages-but the ADT list can have an arbitrary length. Thus, in the strict
sense, you cannot use an array to implement a list because it is certainly possi-
ble for the number of items in the list to exceed the fixed size of the array.
When developing implementations for ADTs, you often are confronted with
this fixed-size problem. In many contexts, you must reject an implementation
that has a fixed size in favor of one that can grow dynamically.

In addition, although the most intuitive means of imposing an order on
data is to order it physically, this approach has its disadvantages. In a physical
ordering, the successor of an item x is the next data item in sequence after x,
that is, the item "to the right" of x. An array orders its items physically and, as
you saw in the previous chapter, when you use an array to implement a list,
you must shift data when you insert or delete an item at a specified position.
Shifting data can be a time-consuming process that you should avoid, if possi-
ble. What alternatives to shifting data are available?

To get a conceptual notion of a list implementation that would not involve
shifting, consider Figure 4-1. This figure should help free you from the notion
that the only way to maintain a given order of data is to store the data in that
order. In these diagrams, each item of the list actually points to the next item.
Thus, if you know where an item is, you can determine its successor, which can
be anywhere physically. This flexibility not only allows you to insert and delete

(a)

(b)

Inserted item

(c)

Deleted item

'i'rl'I;'=tiI'
(a) A linked list of integers; (b) insertion; (c) deletion

Preliminaries 173

data items without shifting data, it also allows you to increase the size of the
list easily. If you need to insert a new item, you simply find its place in the list
and set two pointers. Similarly, to delete an item, you find the item and
change a pointer to bypass the item.

Because the items in this data structure are linked to one another, it is
called a linked list. As you will see shortly, a linked list is able to grow as
needed, whereas an array can hold only a fixed number of data items. In many
applications, this flexibility gives a linked list a significant advantage.

Before we examine linked lists and their use in the implementation of an
ADT, we need to know more about pointers. Like many programming lan-
guages, C++ has pointers that you can use to build a linked list. The next
section discusses the mechanics of these pointers.

An item in a linked
list points to its
successor

Pointers

When you declare an ordinary variable x to be int, the C++ compiler allo-
cates a memory cell that can hold an integer. You use the identifier x to refer to
this cell. To put the value 5 in the cell, you could write

x = 5;

To display the value that is in the cell, you could write

cout « "The value of x is " « x « endl;

A pointer variable, or simply a pointer, contains the location, or address
in memory, of a memory cell. By using a pointer to point to a particular
memory cell, you can locate the cell and, for example, determine its content.

Figure 4-2 illustrates a pointer p that points to a memory cell containing
an integer.

The notion of one memory cell that refers to another memory cell is a bit
:ricky. In Figure 4-2, keep in mind that the content of p is not a typical value.
-.=becontent of p is of interest only because it tells you where in memory to

k for the integer value 5. That is, you can get to the integer value indirectly
_ using the address that p contains.

Look in location 342 for what you want

rointer p

Memory cells

I CTEEJ'-- _
Addresses - 340 341 342 343

inter to an integer

174 Chapter 4 Linked Lists

Now for two big questions:

• How do you get a pointer variable p to point to a memory cell?

• How do you use p to get to the content of the memory cell to which p
points?

Before we answer either question, we need to declare p as a pointer variable.
For example, the declaration

p is a pointer
variable

int *Pi

declares p to be an integer pointer variable; that is, p can point only to
memory cells that contain integers. You can declare pointers to any type except
files.

You need to be careful when declaring more than one pointer variable.
The declaration

q is not a pointer
variable

int *p, qi

declares p to be a pointer to an integer, but declares q to be an integer. That is,
the statement is equivalent to

int *Pi
int qi

To declare both p and q correctly as integer pointer variables, write

int *p
int *qi

orl

int *p, *qi

Memory for the pointer variables p and q, and for the integer variable x in

int Xi

is allocated at compilation time; that is, before the program executes. Such
memory allocation is called static allocation and the variables are called stati-
cally allocated variables. Execution of the program does not affect the memory
requirements of statically allocated variables.

1. In the context of pointers, the * operator is unary (like the ! operator) and right-
associative. Whether you write int *p or int * p, * applies to the variable p and not
the data type into

175Preliminaries

Initially, the contents of p, q, and x are undetermined, as Figure 4-3a illus-
trates. However, you can place the address of x into p and therefore have p
point to x by using the C++ address-of operator s ; as follows:

P = &Xi

Figure 4-3b illustrates the result of this assignment. Notice that the assignment
statement

P = Xi II THIS STATEMENT IS ILLEGAL

is illegal because there is a type clash: x is an integer variable, while p is a
pointer variable, which can contain only an address of a memory cell that con-
tains an integer.

Pointer p now points to a memory cell. The notation *p represents the
memory cell to which p points. You can store a value in the memory cell to
which p points by writing the assignment statement

*p = 6i

as Figure 4-3c illustrates. (You could, of course, write x = 6 to make the same
assignment.) After this assignment, the expression *p has the value 6, because
6 is now the value in the memory cell to which p points. Thus, you could, for
example, use eout « *p to display 6.

Memory allocation can also occur at execution time and is called dynamic
allocation. A variable allocated then is called a dynamically allocated variable.
C++ enables dynamic allocation of memory by providing the operator new,
which acts on a data type, as in

P = new inti

The expression new int allocates a new memory cell that can contain an integer
and returns a pointer to this new cell, as Figure 4-3d illustrates. The initial
content of this new cell is undetermined. Note that new ehar would allocate a
new memory cell that can contain a character, and so on. If, for some reason,
new cannot allocate memory, it throws the exception std: :bad_alloe, which is
in the <new>header.

Observe that this newly created memory cell has no programmer-defined
name. The only way to access its content or to put a value in it is indirectly via the
pointer that new creates, that is, by using *p in the previous example. As Figure
4-3e shows, the statement *p = 7 assigns 7 to the newly created memory cell.

Suppose that you now assign to the pointer q the value in p by writing the
statement

q = Pi

Pointer q now points to the same memory cell that p points to, as Figure 4-3f
illustrates. Alternatively, you could let q point to a new memory cell, as Figure

*p is the memory
cell to which p
points

new allocates
memory dynamically

Copying a pointer

-

-

4-3g shows, and assign a value to this new cell. These steps are like the ones
pictured in parts d and e of this figure.

Suppose that you no longer need the value in a pointer variable. That is,
you do not want the pointer to point to any particular memory cell. C++ envi-
ronments provide the constant NULL? which you can assign to a pointer of any
type. By convention, a NULL pointer value means that the pointer does not
point to anything. Do not confuse a pointer variable whose value is NULL with
one whose value is not initialized. Until you explicitly assign a value to a newly
declared pointer variable, its value-like that of any other variable-is unde-
fined. You should not assume that its value is NULL. In Figure 4-3a, p and q are
examples of pointer variables whose values are undefined.

Now suppose that you no longer need a dynamically allocated memory
cell. Simply changing all pointers to the cell wastes memory, because the cell
remains allocated to the program, even though it is no longer accessible. For
example, Figure 4-3h shows the result of assigning NULL to p. (In the figures, a
diagonal line represents a NULL value.) The cell to which p originally pointed-
it still contains 7 -is in limbo. To avoid this situation-which is called a
memory Ieak=-Ca-r provides the operator delete as a counterpart to new.

Conceptually, the expression

,
176 Chapter 4 Linked Lists

A pointer whose
value is NULL does
not point to anything

delete returns
memory to the
system for reuse

delete q does not
deallocate q; it
leaves q undefined

A pointer to a
deallocated memory
cell is possible and
dangerous

delete q

returns to the system the memory cell to which q points. That is, delete in
effect deallocates memory from a program, thus freeing the memory for future
use by the program. Because delete does not deallocate q itself and leaves the
content of q undefined, a reference to *q at this point can be disastrous. Thus,
you should assign NULL to q after applying the delete operator as a precau-
tion against following q to a deallocated memory cell. Figure 4-3i shows the
results of these actions.

However, consider the situation

P = new inti
q = Pi
delete Pi
P = NULLi

as illustrated in Figure 4-4. Even though p is NULL, q still points to the deallo-
cated node. Later the system might reallocate this node-via the new opera-
tor-and q might still point to it. You can imagine some of the errors that
might ensue if a program mistakenly followed the pointer q and reached a
node within an entirely unexpected data structure! It would be useful if the
delete operator could eliminate the potential for this type of program error
by setting to NULL all pointers to a deallocated node. Unfortunately, this task is

2. Several header files, such as cstdlib and often cstddef, define NULL. Its value is O. Many
C++ programmers prefer to use 0 instead of NULL. However, for clarity, this book uses NULL.

(a) int *p, *q;
int x;

(b) p &x;

(c) *p 6;

(d) p new int;

(e) *p 7;

(f) q p;

(g) q = new int;
*q = 8;

(h) P NULL;

(i) delete q;
q = NULL;

Preliminaries 177

[2] [2] CO
p q x

[3----.[2J
p x or *p

G----+CTI
p x or *p

[3----.[2J OJ
p *p x

[3----.[2J OJ
p *p x

~.q

q

[3----.[2J OJ
p *p x

~
q *q

IZI [2J OJ
p x

~
q *q

IZI L2J OJ
p x

IZI
q

(a) Declaring pointer variables; (b) pointing to statically allocated memory; (c)
assigning a value; (d) allocating memory dynamically; (e) assigning a value; (f)
copying a pointer; (g) allocating memory dynamically and assigning a value; (h)
assigning NULL to a pointer variable; (i) deallocating memory

178 Chapter 4 Linked Lists

(b) q = Pi (d) p = NULLi

int *P, *qi

p new inti

(a) p = new inti (c) delete Pi

An incorrect pointer to a deallocated node

very difficult. Because delete cannot determine which variables-in addition
to p-point to the node to be freed, it will have to remain the programmer's
responsibility not to follow a pointer to a freed node.

The sequence of statements in Figure 4-5 should serve to illustrate point-
ers further. Note that ADT implementations and data structures that use C++
pointers are called pointer-based.

[I]
p

[I]
q

II Allocate a cell of type into
~
p *p

ITl
q

II Assign a value to the new cell.
~
p *p

ITl
q

II Allocate a cell of type into
~
p *p

q *q

*p l'I

II Assign a value to the new cell. ~
p *p

cout « *p « II Output line contains: 1 2
« *q « endli II These values are in the

II cells to which p and q point.
G--CIJ
q *q

Programming with pointer variables and dynamically allocated memory
(continues)

q new inti

*q = 2i

Preliminaries

*p *q + 3; II The value in the cell to which
II q points, 2 in this case, and 3
II are added together. The result is
II assigned to the cell to which
II p points.

179

[3-------+[D
p *p

G---CIJ
q *q

q *p or *q

q *p or *q

~*p

p CD
~*q

q

IZI
p

cout « *p « II Output line contains: 5 2
« *q « endl;

p II p now points to the same cell as q.
II The cell p formerly pointed to is
II lost; it cannot be referenced.

IZI
q

(continued from previous)

q;

cout « *p « II Output line contains: 2 2
« *q « endl;

*p 7· II The cell to which p points (which,
II is also the cell to which q points)
II now contains the value 7.

cout « *p « II Output line contains: 7 7
« *q « endl;

p new int; II This changes what p points to,
II but not what q points to.

delete p II Return to the system the cell to
II which p points.

P NULL; II Set p to NULL, a good practice
II following delete.

q NULL; II The cell to which q previously
II pointed is now lost. You cannot
II reference it.

c++ Pointer Variables
1. The declaration

int *p;

(continues)

180 Chapter 4 Linked Lists

An ordinary C++
array is statically
allocated

f

c++ Pointer Variables (continued)
statically allocates a pointer variable p whose value is undefined but is
not NULL. The pointer variable p can point to a memory cell that con-
tains an integer in this example.

2. The statement

p = new inti

dynamically allocates a new memory cell that can contain an integer.
The pointer variable p points to this new cell. (However, see item 5 on
this list.)

3. The expression *p represents the memory cell to which the pointer
variable p points.

4. If the pointer variable p contains NULL, it does not point to anything.
5. Ifnew cannot allocate memory, it throws the exception

std: :bad_alloc. Thus, a statement such as

p = new inti

needs to be contained within a try block followed by an exception
handler for the bad_alloc exception. (std: :bad_alloc is defined in
the <new> header.)

6. The statement

delete p;

returns to the system the memory cell to which p points. It does not
delete p itself. Remember that p is a variable, and as such, its lifetime is
not affected by delete.

Dynamic Allocation of Arrays

When you declare an array in c++ by using statements such as

const int MAX_SIZE = 50;
double anArray[MAX_SIZE];

the compiler reserves a specific number-MAx_sIZE, in this case-of memory
cells for the array. This memory allocation occurs before your program
executes, so it is not possible to wait until execution to give MAX_SI ZE a value.
We have already discussed the problem this fixed-size data structure causes
when your program has more than MAX_SIZE items to place into the array.

Preliminaries

You just learned how to use the new operator to allocate memory dynami-
cally; that is, during program execution. Although the previous section showed
you how to allocate a single memory cell, you actually can allocate many cells
at one time. If you write

int arraySize = 50i
double *anArray = new double[arraySize)i

The pointer variable anArray will point to the first item in an array of 50
items. Unlike MAX_SIZE, arraySize can change during program execution.
You can assign arraySize a value and, thus, determine how large your array
will be at execution time. Good, but how do you use this array?

Regardless of how you allocate an array-statically, as in the first example,
or dynamically, as in the second-you can use an index and the familiar array
notation to access its elements. For example, anArray [0] and anArray [l]

are the first two items in the arrayanArray.

You also can use a pointer offset notation to reference any array element.
c++ treats the name of an array as a pointer to its first element. For example,

*anArray is equivalent to anArray[O]

* (anArray+ 1) is equivalent to anArray [1]

and so on. (This notation uses pointer arithmetic.) We are not suggesting that
you use this notation, however.

When you allocate an array dynamically, you need to return its memory
cells to the system when you no longer need them. As in the previous section,
you use the delete operator to perform this task. To deallocate the array
anArray, you write

delete [) anArraYi

You write brackets when you apply delete to an array.
Now suppose that your program uses all of the array anArray, despite

having determined its size during execution. You can allocate a new and larger
array, copy the old array into the new array, and finally deallocate the old array,
The following statements double the size of anArray:

double *oldArray = anArraYi II copy pointer to array
anArray = new double[2*arraySize)i II double array size
for (int index = Oi index < arraySizei ++index)

anArray[index) = oldArray[index)i II copy old array
delete [) oldArraYi II deallocate old array

Subsequent discussions in this book will refer to both statically and dynam-
ically allocated arrays. Our array-based ADT implementations will use statically
allocated arrays for simplicity. The programming problems will ask you to
create array-based implementations that use dynamically allocated arrays.

181

Use the new opera-
tor to allocate an
array dynamically

An array name is a
pointer to the array's
first element

delete returns a
dynamically allo-
cated array to the
system for reuse

You can increase the
size of a dynamically
allocated array

	Scan_Doc0003
	Scan_Doc0004

