
CSS 503
Program 1: Parallelizing a Convex-Hull Program with

Multi-Processes
Professor: Munehiro Fukuda

Due date: see the syllabus

1. Purpose
In this programming assignment, we will parallelize a convex hull program with multiple processes. The
algorithm that we use is a combination of divide-and-conquer and Graham’s scan. Divide-and-conquer
divides an entire problem into a tree of sub-spaces, each small enough to be solved with an independent
process. We fork child processes in a tree as partitioning a problem with divide-and-conquer and let these
processes work on their own sub-space in parallel.

2. Convex Hull
Definition: The convex hull CH(Q) of a set Q of points is the smallest convex polygon P for which each
point in Q is either on the boundary of P or in its interior. Intuitively, we can think of each point in Q as
being a nail sticking out from a board. The convex hull is then the shape formed by a tight rubber band
that surrounds all the nails, (from Introduction to Algorithms by T. H. Cormen et al).

3. Graham’s Scan
This algorithm maintains a stack S of candidate points. Each point of the input set Q is pushed once onto
the stack, and the points that are not vertices of CH(Q) are eventually popped from the stack. When the
algorithm terminates, stack S contains exactly the vertices of CH(Q), in counterclockwise order of their
appearance on the boundary. The scan will be performed as follows: Choose three consecutive points,
last2, last1, and next; check if the leftward scanning bar that emanates from last2 actually hits last1 first
before the next point; if so keeps last1 as a candidate, otherwise drop off last1; shift next to last1; and get
a new point from the stack S as next. Repeat until we reach the very first point.

P0

P4 (next)

P3 (last1) P2 (last2)

P1

P5

4. Combination with Divide-and-Conquer
Graham’s Scan completes in O(n log n) but runs in sequential. We will make this program easier to be
parallelized, using divide-and-conquer that recursively divides Q into two subsets until each becomes
small enough to have at least two points and thus to create a triangle or a line segment quickly as a convex
hull. Thereafter, we will go through the conquer phase as repeatedly merging two convex hulls into a
larger subset, excluding inner points within this union of the hulls, and applying Graham’s Scan to it at
each repetitive stage.

5. Program Structure
Your work will parallelize the convex hull program that the professor got prepared for. Please login uw1-
320-lab.uwb.edu and go to the ~css503/prog1/ directory. You can find the convex.cpp that consists of the
following functions.
Function Name Description
void init(deque<Point> &q, int nPoints) Initializes points, each with (x, y) axes and an id.
void divide(deque<Point> &q, deque<Point>
&s1, deque<Point> &s2)

Divides q into s1 and s2. It is used in
divide_and_conquer().

double polar_angle(Point &o, Point &p,
double &distance)

Computes the polar angle and distance between the
origin o and the other point p.

void merge(deque<Point> &q, deque<Point>
&s1, deque<Point> &s2)

Merges two deques s1 and s2 into q as removing
those points not in polar angles.

bool leftturn(Point &a, Point &b, Point &c) Checks if B is hit by line that revolves left on A to B.
void graham(deque<Point> &q) Performs the graham algorithm that scans all points

from the bottom as revolving a line leftward and
eliminating non-convex points.

void divide_and_conquer(deque<Point> &q) Divides a list of all points by two until each subset
includes at least two, and thereafter merges those that
make a convex.

int main(int argc, char *argv[]) Creates and initialize a given number (argv[1]) of
points, starts a timer, calls divide_and_conquer() to
find the convex hull for these points, and stops a
timer to check the execution time.

6. Parallelization with Multi-Processes
Let’s assume that you would like to parallelize this convex-hull program, (i.e., convex.cpp) with N
processes or N CPU cores. When you recursively divide Q into two smaller subsets, (say left and right
subsets), you should fork a child process and let it work on the right subset, whereas have the original
parent take care of the left subset. If you still need to create a child process, have these parent and child

processes create a new child respectively. This process fork should be performed within the
divide_and_conquer() function of the original program, convex.cpp. Since all point data including global
and local variables are automatically copied to new children, you don’t have to worry about any data
transfer from a parent to new children. Therefore, you don’t even have to modify any functions than
divide_and_conquer() of the original convex.cpp.

However, in the conquer phase where a parent receives a sub convex hull from a child, you need to use a
pipe that allows the child to send its sub convex hull to its parent. For this purpose, every time a parent
forks a new child, you should create a pipe in advance so that the parent and child process can share the
same pipe. This pipe creation and data transfer from the child back to the parent should be also
implemented within divide_and_conquer().

When sending a sub convex hull from a child to its parent, add the following send() and recv() functions
to your program so that you can only focus on process management in divide_and_conquer().

/*
 * Sends a deque to a destination process through a pipe fd.
 * @param fd the file descriptor of a pipe
 * @param q a deque to send
 */
void send(int fd, deque<Point> &q) {
 int size = q.size();
 double x[size];
 double y[size];
 int id[size];

 // serialize all deque items to x, y, and id arrays
 for (int i = 0; i < size; i++) {
 Point p = q.front();
 x[i] = p.x;
 y[i] = p.y;
 id[i] = p.id;
 q.pop_front();
 }

 // send all data through a pipe
 write(fd, &size, sizeof(int));
 write(fd, x, sizeof(double) * size);
 write(fd, y, sizeof(double) * size);
 write(fd, id, sizeof(int) * size);
}

/*
 * Sends a deque from a source process through a pipe fd.
 * @param fd the file descriptor of a pipe
 * @param q a deque to receive
 */
void recv(int fd, deque<Point> &q) {
 // receive all data through a pipe
 int size = 0;
 read(fd, &size, sizeof(int));

 double x[size];
 double y[size];
 int id[size];
 read(fd, x, sizeof(double) * size);
 read(fd, y, sizeof(double) * size);
 read(fd, id, sizeof(int) * size);

 // de-serialized x, y, and id arrays to all deque items
 for (int i = 0; i < size; i++) {
 Point *p = new Point(x[i], y[i], id[i]);
 q.push_back(*p);
 }
}

7. Statement of Work
Follow through the parallelization steps described below:

Step 1: Copy the original convex.cpp to convex_mp.cpp.
Step 2: Add the send() and recv() functions just above divide_and_conquer() to convex_mp.cpp.
Step 3: Add the following header files to the top of convex_mp.cpp.

 #include <sys/types.h> // fork, wait

#include <sys/wait.h> // wait
#include <unistd.h> // fork, pipe
#include <stdlib.h> // exit
#include <stdio.h> // perror

Step 4: Parallelize convex_mp.cpp by modifying the divide_and_conquer().
Step 5: Conduct performance evaluation and write up your report.

Focus on #process = 1, 2, and 4, (because uw1-320-16 ~ 23 machines have four CPU cores). Run your
program with the following scenario and attach your execution output to your report.
css503@uw1-320-18 prog1]$./convex 100
do you want to display initial data? n
elapsed time = 1032
do you want to display result data? y
point[47].x = 7739.000000 .y = 12.000000
point[72].x = 9503.000000 .y = 19.000000
point[27].x = 9956.000000 .y = 1873.000000
point[45].x = 9932.000000 .y = 5060.000000
point[74].x = 9708.000000 .y = 6715.000000
point[28].x = 6862.000000 .y = 9170.000000
point[99].x = 5928.000000 .y = 9529.000000
point[15].x = 3929.000000 .y = 9802.000000
point[64].x = 709.000000 .y = 8927.000000
point[32].x = 336.000000 .y = 6505.000000
point[85].x = 124.000000 .y = 4914.000000
point[53].x = 97.000000 .y = 2902.000000
point[33].x = 846.000000 .y = 1729.000000
point[50].x = 795.000000 .y = 570.000000
point[5].x = 2362.000000 .y = 27.000000
[css503@uw1-320-18 prog1]$./convex_mp 100 4
do you want to display initial data? n
elapsed time = 2386
do you want to display result data? y
point[47].x = 7739.000000 .y = 12.000000
point[72].x = 9503.000000 .y = 19.000000
point[27].x = 9956.000000 .y = 1873.000000
point[45].x = 9932.000000 .y = 5060.000000
point[74].x = 9708.000000 .y = 6715.000000
point[28].x = 6862.000000 .y = 9170.000000
point[99].x = 5928.000000 .y = 9529.000000
point[15].x = 3929.000000 .y = 9802.000000
point[64].x = 709.000000 .y = 8927.000000
point[32].x = 336.000000 .y = 6505.000000
point[85].x = 124.000000 .y = 4914.000000
point[53].x = 97.000000 .y = 2902.000000
point[33].x = 846.000000 .y = 1729.000000
point[50].x = 795.000000 .y = 570.000000
point[5].x = 2362.000000 .y = 27.000000
[css503@uw1-320-18 prog1]$./convex 20000
do you want to display initial data? n
elapsed time = 200391
do you want to display result data? n
[css503@uw1-320-18 prog1]$./convex_mp 20000 1
do you want to display initial data? n
elapsed time = 211026
do you want to display result data? n
[css503@uw1-320-18 prog1]$./convex_mp 20000 2
do you want to display initial data? n
elapsed time = 113914
do you want to display result data? n
[css503@uw1-320-18 prog1]$./convex_mp 20000 4
do you want to display initial data? n

elapsed time = 61255
do you want to display result data? n
Your minimum requirements to complete this assignment include:

(1) Your program creates argv[1] – 1 child processes and involve all argv[1] processes in parallel
computation.

(2) The performance improvement with four processes applied to 20,000 points should be equal to or
larger than 211026 / 113914 > 1.8 times.

(3) The performance improvement with four processes applied to 20,000 points should be equal to or
larger than 211026 / 61255 > 3.4 times.

8. What to Turn in
This programming assignment is due at the beginning of class on the due date. Please turn in the
following materials in a hard copy. No email submission is accepted.
Criteria Grade
Documentation of your parallelization strategies including explanations and illustration in
one or two pages. (No more than two, otherwise – 2pts)

20pts

Source code that adheres good modularization, coding style, and an appropriate amount of
commends.

• 25pts: well-organized and correct code to run the same number as CPU cores, using
fork() and wait(). (Four CPU cores use only four processes including parent.)

• 23pts: messy yet working code or code with minor errors receives
• 20pts: code with major bugs, no parallelization, or incomplete code receives

25pts

Execution output that verifies the correctness of your implementation and demonstrates any
improvement of your program’s execution performance.

• 25pts: Correct execution and performance improvement up to 4 CPUs.
• 20pts: Correct execution but performance improvement up to 2 CPUs
• 15pts: Correct execution but little performance improvement
• 10pts: Incorrect results
• 5pts: No results

25pts

Discussions in one or two pages. (No more than two, otherwise – 2pts)
• Analysis of the effectiveness of your parallelization. (+10pts)
• Possible performance improvement of your program. (+10pts)
• Limitation of your program. (+5pts)

25pts

Lab Sessions 1 If you have not yet turned in a hard copy of your source code and output or
missed any session(s), please turn in together with program 1.

5pts

Total
Note that program 1 takes 11% of your final grade.

100pts

