
CSS 503
Final Project: Inter-Segment/Group UDP Broadcast

Professor: Munehiro Fukuda
Due date: see the syllabus

1. Purpose
The final project will implement a UDP multicast relay program that facilitates a user-level UDP
multicast environment over multiple network segments and/or multicast groups. UDP multicast is
available only within a local network segment or a single multicast group by default, beyond which we
need to design a mechanism that delays a UDP multicast message to a different segment or group. One
idea is to run such a facilitator at each network segment or group and connect any two of different
facilitators with a TCP link that delays a UDP message to the other end. To implement this UDP relay, we
will use TCP sockets, UDP multicast sockets, and multithreading.

2. Socket Class
Use ~css503/programming/prog4/Socket.h and Socket.cpp to establish a TCP communication link.
Methods Descriptions
Socket(int port) A default constructor that creates a new Socket object with a given

port.
~Socket() Closes the socket descriptor maintain in this Socket object.
int getClientSocket(char[] address) Establishes a TCP connection to a given address at port and

returns its socket descriptor. After this call, you can use write(sd,
buf, size) and read(sd, buf, size) where sd is the return value
from getClientSocket().

int getClientSocket(char[] address,
int sndbufsize, bool nodelay) Establishes a TCP connection to a given address at port, adjusts

this socket’s send buffer with sndbufsize, disables Naggle’s
algorithm if nodelay = false, and returns its socket descriptor. In
general, you don’t have to use this method.

int getServerSocket() Accepts a TCP connection request from a client and returns its
socket descriptor. After this call, you can use write(sd, buf, size)
and read(sd, buf, size) where sd is the return value from
getServerSocket().

int getServerSocket(int rcvbufsize,
bool nodelay) Accepts a TCP connection request from a client, adjusts this

socket’s receive buffer with rcvbufsize, disables Naggle’s
algorithm if nodelay = false, and returns its socket descriptor. In
general, you don’t have to use this method.

3. UdpMulticast Class
Use ~css503/programming/prog4/UdpMulticast.h and UdpMulticast.cpp to multicast a UDP message.
Methods Descriptions
UdpSocket(char group[], int port) A default constructor that opens a UDP datagram socket and has it

participate in a given group address, (e.g. "238.255.255.255") at a
given port.

~UdpSocket() A default dstructor that closes the UDP socket.
int getClientSocket() Uses this socket descriptor as a client multicast socket. It returns a

socket descriptor but you do not directly use the descriptor.
int getServerSocket() Uses this socket descriptor as a server multicast socket. It returns a

socket descriptor but you do not directly use the descriptor.

bool multicast(char buf[]) Has a client multicast a give message in buf[] to all servers belonging
to the same group@port. It returns true upon a success, otherwise
false.

recv(char buf[], int size) Has a server receive a multicast message into a given buf[] with the
size. It returns true upon a success, otherwise false.

4. Inter-Segment/Group UDP Broadcast
The key idea is to choose a representative computing node in each different segment (or group), to run a
UDP relay program there, and to have it relay local UDP multicast messages through TCP links to remote
segments as well as have it multicast to the local segment remote UDP messages that came in through
TCP links. See the figure below:

The problem is a cyclic message relay that may even cause a domino effect and thus flood network
segments with copies of the same UDP message. To prevent this problem, we will add a UDP relay
header to the top of the original UDP message. This header format is described below:

1st byte 2nd byte 3rd byte 4th byte
–32 –31 –30 hop (e.g. 3)

1st UDP Relay’s IP address
2nd UDP Relay’s IP address
3rd UDP Relay’s IP address

The actual UDP message

The UDP relay header manipulation takes place in the following two cases:

(1) Every time a UDP relay program forwards a local UDP message to a remote segment through
TCP, it adds its own 4-byte IP address to the tail of this UDP relay header as incrementing its hop
field (4th byte).

(2) Every time a UDP relay program receives a UDP message from a remote segment through TCP, it
will scan the UDP relay header to examine if it includes the IP address of where this relay program
is running. If so, the same message has been once delayed by this relay program and thus should
be simply discarded.

5. UdpRelay Class
This is the class that you will design to facilitate inter-segment/group UDP multicast. The class is
instantiated from the following driver program (located as ~css503/programming/prog4/driver.cpp).

#include "UdpRelay.h"
#include <iostream> // cerr

using namespace std;

int main(int argc, char *argv[]) {
 // verify the argument.
 if (argc != 2) {
 cerr << "usage: bcast groupIp:groupPort" << endl;
 return -1;
 }

 UdpRelay udprelay(argv[1]);

 return 0;
}

The UdpRely constructor receives a string, (i.e., argv[1] in the above driver program) that includes
groupIp:groupPort, (e.g., “238.255.255.255:12345”). UdpRely manipulates two ports:

(1) Group Port: initialized with argv[1] and used for UDP multicast
(2) TCP Port: hard-coded with the last 5 digits of your student ID and used for TCp connection

The UdpRelay instantiates the following three threads:

(1) commandThread:
Waits for a user to type the following commands from the keyboard input, (i.e., cin). The available
commands include:
Commands Descriptions
add remoteIp:remoteTcpPort Adds a TCP connection to a remote network segment or

group whose representative node’s IP address and TCP port
are remoteIP and remoteTcpPort. It then instantiates
relayOutThread that keeps reading a UDP multicast message
through this TCP connection from remoteIp and multicasting
the message to the local group, (i.e., groupIp).

delete remoteIp Deletes the TCP connection to a remote network segment or
group whose representative node’s IP address is remoteIp. It
also terminates the corresponding relayOutThread.

Show Shows all TCP connections to remote network segments or
groups.

help Summarizes available commands like:

UdpRelay.commandThread: accepts...
 add remoteIp:remoteTcpPort
 delete remoteIp
 show
 help
 quit

Quit Terminates this UdpRelay program. (Optional: you don’t have
to implement it. In fact, the key answer hasn’t implemented
it.)

(2) acceptThread:
Creates a Socket object with a given TCP port, (namely the last 5 digits of your student ID); and
thereafter keeps accepting a TCP connection request from a remote UdpRely; checks if another
TCP connection has been already established to that remote node; if so, deletes the former
connection; and starts relayOutThread that keeps reading a UDP multicast message relayed
through this TCP connection from the remote node and multicasting it to the local group, (i.e.,
groupIp).

(3) relayInThread:

Creates a UdpMulticast object with a given groupIp and groupPort, and thereafter keeps catching a
local UDP multicast message. Every time relayInThread receives a UDP multicast message, it
scans the multicast header to examine if it includes the local UdpRelay’s IP address. If so, it
simply discards this message. Otherwise relayInThread forward this message through TCP
connections to all the remote network segments/groups.

As described above, every time commandThread and acceptThread establish a new TCP connection to a
remote UdpRely program, they launch a new relayOutThread:

Keeps reading a UDP multicast message relayed through this TCP connection from the remote
node; scans the multicast header to examine if it includes the local UdpRelay’s IP address; if so,
simply discards this message, otherwise multicasts it to the local group, (i.e., groupIp).

The following figure illustrates the structure of UdpRelay:

Note that both relayInThread and relayOutThread must scan each UDP multicast header to examine if it
includes the local UdpRelay’s IP address and simply discards this message if it has been routed from the
local UdpRelay.

User

commandThread

relayInThread

relayOutThread

relayOutThread

acceptThread

remote
segment 1

remote
segment 2

remote
segment 3

local segment

new connection

message

read

read

multicast

multicast

recv

write

write

6. Statement of Work
Follow the procedures shown below:

(1) Implement UdpRelay.h and UdpRelay.cpp.
(2) Compile it with driver.cpp:

g++ UdpRelay.cpp UdpMulticast.cpp Socket.cpp driver.cpp –o UdpRelay
(3) Test your UdpRelay using 6 computing nodes:

Network Segments Computing Nodes
(uw1-320-01 ~ 23)

Programs and commands

Node 1 UdpRelay 237.255.255.255:yourUdpPort 237.255.255.255
Node 2 java BroadcastServer 237.255.255.255:yourUdpPort
Node 3 UdpRelay 238.255.255.255:yourPort 238.255.255.255
Node 4 java BroadcastServer 238.255.255.255:yourUdpPort
Node 5 UdpRelay 239.255.255.255:yourPort

add Node1:yourPort
add Node3:yourPort

Node 6 java BroadcastServer 239.255.255.255:yourUdpPort

239.255.255.255

Node 7 java BroadcastClient 239.255.255.255:yourUdpPort Hello!

Note:

(a) BroadcastServer.class and BroadcastClient.class are located at~css503/programming/prog4/java/
(b) Node 1 through to 7 may be any seven machines of uw1-320-01 ~ uw1-320-23.
(c) yourUdpPort and your TcpPort may be identical.
(d) Start node1, node2, node3, node4, node5, and node6 in this order. Thereafter, run node7.

7. Teamwork
You may work on this final project independently or in teamwork with another student, (i.e., a group of
up to two students including you). If you work in a team, you must comply with the following guidelines:

(1) The work assignment table: All team members may turn in a joint report. (I am reluctant to
repeat reading the same reports.) However, the report must include the work assignment table that
details who worked on which portion of code, functionality, and/or tiers.

(2) Confidential collegial evaluation: Please evaluate your partner’s contribution to the project,
envelop it, and turn in this evaluation with your joint report.

8. What to Turn in
This programming assignment is due at the beginning of class on the due date. Please turn in the
following materials in a hard copy. No email submission is accepted.

Criteria Grade
Documentation of your UdpRely implementation including explanations and illustration in
one or two pages. No need to repeat this work specification. (No more than two, otherwise –
2pts).

20pts

Source code that adheres good modularization, coding style, and an appropriate amount of
commends.

• 25pts: well-organized and correct code receives
• 23pts: messy yet working code or code with minor errors receives
• 20pts: code with major bugs or incomplete code receives

25pts

Execution output that verifies the correctness of all your implementation as well as covers
many test cases.

• 25pts: Statement of Work Step 3’s snapshot plus additional outputs for add, delete,
show, help, and quit.

• 20pts: Statement of Work Step 3’s snapshot plus additional outputs that however do
not include all commands.

• 15pts: Statement of Work Step 3’s snapshot only
• 15pts: Some outputs for add, delete, show, help, and quit only (but not including

Statement of Work Step 3’s snapshot)
• 10pts: Some marginal outputs
• 5pts: No results

25pts

Discussions in one or two pages. (No more than two, otherwise – 2pts)
• Limitation and possible extension of your program (+20pts)
• Discussions on Statement of Work Step 3’s snapshot (+5pts)

25pts

Lab Session 4 If you have not yet turned in a hard copy of your source code and output or
missed this session, please turn in together with program 4.

5pts

Teamwork is evaluated by checking if your project is achieved in collaboration with another
student. No work assignment table receives -5pts. A poor collegial evaluation receives -5pts.

(-10pts)

Individual Work receives +5 extra pts.

5pts

Total
Note that this final project takes 17% of your final grade.

100pts

