Final Project Report

CSS 552
Winter 2011

Ray Tracing with Dispersion

Submitted by,
Kohei Ueda
Shivani Srikanteshwara
Mary Ann Chiramattel Kunjachan
Contents
Problem Statement .. 3
Simulation/Our Solution ... 3
Pseudo-code.. Error! Bookmark not defined.
Sample Output ... 6
Problems.. 7
References.. 7
Problem Statement

When a beam of white light enters a transparent object from air, its components of various wavelengths are refracted into different directions. The transmitted lights form a colored strip. This phenomenon is called *light dispersion*.

![A compact fluorescent lamp seen through an Amici prism](image)

Our objective is to render dispersion of a white light when passed through a transparent material; it should closely match the photographs of their real-world counterparts.

Simulation/Our Solution

1. Light Ray-tracing
 1. Photon Map Buffer
 • For each object, aggregating color from all the light source
2. Regular Ray-tracing without Phong illumination
 1. The color will be obtained by the Photon map buffer
From Snell’s law, the refract vector V_r is

$$V_r = \frac{n_1}{n_2} \times (-V) + \left\{ \left(\frac{n_1}{n_2}\right) \cos(\theta_i) - \cos(\theta_o) \right\} \times N$$

Where

- n_1: refraction index of material 1 (origin) – constant (air)
- n_2: refraction index of material 2 (target) – transparent
- θ_i: insert angle (angle of incidence)
- θ_o: refract angle
- V: View vector (Ray direction * -1)
- N: Normal vector at view point

In this case

Refractive index:

$$n = \frac{n_2}{n_1} = \frac{\sin(\theta_i)}{\sin(\theta_o)}$$

$$\sin(\theta_o) = \frac{1}{n} \times \sin(\theta_i)$$

$$\cos(\theta_i) = V \cdot N$$

$$\cos(\theta_o) + \sqrt{1 - \sin^2(\theta_o)} =$$

$$\sqrt{(1 - n^2 - 2(1 - \cos^2(\theta_i)))} = \sqrt{1 - n^2 - 2(1 - (V \cdot N)^2))}$$

Therefore

$$V_r = \frac{1}{n} \times (-V) + \left\{ \frac{1}{n} \times V \cdot N - \sqrt{1 - n^2 - 2(1 - (V \cdot N)^2))} \right\}$$
Steps for Ray Tracing with Dispersion

1. Photon map initialization:
 - Light-ray intersection with objects
 - Accumulate into buffer 2-D array
 - The color will be calculated from all the light sources
 - The final image will be created on the view plane
2. Dispersion on transparent object with refractivity property using Snell’s law and calculating the direction of monochromatic ray from refractive lights.
3. Illuminate view image plane by calculating the color from photon map by the intersection of light rays from camera position and refractive.
Sample Output

Image before Dispersion

Output with no dispersion

Output with dispersion effect (Rainbow color strip)
Problems

Here are some of the problems we encountered as a group in our implementation

- Building the photon map
- Filtering the color values from the Photon map
- Manipulating the refracted ray direction and viewing the color spectrum on the viewing screen.

References

