
Depth of Field for 

Photorealistic Ray 
Traced Images
JESSICA HO AND DUNCAN MACMICHAEL

MARCH 7, 2016

CSS552: TOPICS IN RENDERING



Problem and Background



Problem Statement

 The Phong Illumination Model and ray tracing engine explored thus 

far are flexible in the kinds of illumination they can simulate, but are 
only part of a larger formula for producing photorealistic ray traced 

images

 Part of the reason that basic ray tracing looks fake because of 

“jagged edges, hard shadows, everything is in focus, objects are 

completely still, surfaces are perfectly shiny, and glass is perfectly 

clear” (Hart, p. 2) [1]

 Depth of Field is needed as one way to enhance realism



Problems with Computer 

Generated Cameras

 In real life, cameras and our eyes filter light through a lens and 

control the amount of light allowed onto the image plane (image 
sensor or retina), which, according to Demers (2004) [6], causes 

some items to appear out of focus depending on their distance 

from the focal plane and the projection

 Default 3D camera model does not replicate true camera 

functionality (such as controllable focal distance and aperture), 

meaning the image is rendered in perfect focus and the viewer 

immediately realizes that the image is computer-generated

 Our current camera does provide focal distance but is not 

configurable by the user (“Focal Distance = Length(lookAtPoint –

eyePoint)” (Harvey, 2012) [7])



Camera Focus Comparison

Standard 3D Camera 

(perfect focus)

Augmented 3D Camera 

(Depth of Field)

http://www.cise.ufl.edu/~jlpaez/imgs/headerImg.png

http://pichost.me/1295404/

http://www.cise.ufl.edu/~jlpaez/imgs/headerImg.png

http://pichost.me/1295404/



Depth of Field and the Circle of 

Confusion (CoC) (Demers, 2004) [6]

 “Depth of field is the effect in which objects within some range of 

distances in a scene appear in focus and objects nearer or farther 
than this range appear out of focus”

 Depth of field “arises from the physical nature of lenses”

 In order for light to converge on a single point on the image plane 

(or retina for our eyes), “its source needs to be a certain distance 

away from the lens”

 The plane at this distance is called the plane in focus; anything not at 

this exact distance is projected to a region on the film instead of a point

 “This region is known as the Circle of Confusion (CoC)”



Single Lens 

Model (Demers, 

2004) [6]

 Thin Lens



Calculating the Circle of Confusion 

(Demers, 2004) [6]

 𝐶𝑜𝐶 = 𝑎𝑏𝑠 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 ∗
𝑓𝑜𝑐𝑎𝑙𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑜𝑏𝑗𝑒𝑐𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑝𝑙𝑎𝑛𝑒𝑖𝑛𝑓𝑜𝑐𝑢𝑠

𝑜𝑏𝑗𝑒𝑐𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗(𝑝𝑙𝑎𝑛𝑒𝑖𝑛𝑓𝑜𝑐𝑢𝑠 −𝑓𝑜𝑐𝑎𝑙𝑙𝑒𝑛𝑔𝑡ℎ)

 Object distance is already provided by current ray 

tracer with the Depth Map (pixelDepth variable)

 “The diameter of the CoC increases with the size of 

the lens and the distance from the plane in focus”

 When the CoC is smaller than the size of a pixel, that 

pixel is in focus while a CoC larger than a pixel will 

be out of focus and cause blurring

Yu, 2004 [10]

Demers, 2004 [6]

Yu, 2004 [10]

Demers, 2004 [6]



Solution Research
MULTIPLE RESEARCHED SOLUTIONS CAN BE GENERALIZED INTO THREE 

CATEGORIES



Approach 1 – Shoot additional rays at runtime 

and average samples (Lee, 2007) [4] 

 Aperture is square bracket around each pixel

 DoF rays originate from each sampled grid point, not from the eye

 “d = perpendicular distance from eye to image plane,
d’ = distance from the eye to the pixel in question,
e = eye position, v is unit vector from eye to current pixel,
f = focal length”

Lee, 2007 [4]Lee, 2007 [4]

Lee, 2007 [4]

Lee, 2007 [4]Lee, 2007 [4]

Lee, 2007 [4]



Approach 1 Analysis

 Pros

 Implementation logic is less 

complex (extending ray tracing 

procedure to simply calculate 

point P and shoot more rays from 

it)

 With random sampling, results are 

smooth (see left)

 Higher accuracy - takes reflection 

and refraction into account

 Cons

 Slower performance



Approach 2 – Physically accurate DoF via 

multiple renders (IneQuation, 2012) [3]

 Default ray tracing uses a perfect pinhole model because its 

camera does not have an aperture aspect

 “Real cameras or our eyes have variable-sized apertures, which are 

physically the equivalent of taking a pinhole camera, taking a lot of 

pictures within that aperture, and averaging them” (IneQuation, 

2012)

 Approach is to “rotate camera slightly multiple times around focus 

point, render the entire scene, accumulate the output color in a 

buffer and divide all values by the number of renders” (IneQuation, 
2012)



Approach 2 Analysis

 Pros

 Simulates a real camera lens most 

accurately in terms of physical -> 

virtual representation

 Cons

 Most expensive technique 

researched by far, requiring 

multiple renders of the scene and 

processing of each render to 

blend together into a final image



Approach 3 – Use Z-Buffer (depth information) 

to post-process DoF (Yu, 2004) [10]

Slightly different camera model and 
simplified CoC calculation 

Simpler camera model with single 
aperture coefficient

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]



Approach 3 Analysis

 Pros

 Object-space depth values are already provided by existing ray tracer 
framework’s Z-Buffer

 Fastest performance (not re-rendering scene multiple times or shooting 
additional rays)

 Cons

 Reflected images “will not filter correctly since the OpenGL depth buffer 
only stores the depth of the mirror’s surface instead of the depth of the 
reflected object” (Yu, 2004) [10]

 Our camera and ray tracer share this same behavior as the OpenGL model 
discussed in approach 3

 Only simulates a perfect lens and does not allow for bokeh (Japanese 
word for quality of out-of-focus areas) (Yu, 2004) [10]



Choice of Solution and 

Implementation Strategy
AND THE WINNER IS…



Implement Approach 3

 GUI

 Replace depth map image in bottom right with DoF image

 Add controls for camera focal distance and aperture

 Add “Re-render” button to re-render image after configuring controls

 RTCamera

 Change “look at point” variable to user-configurable (focal distance)

 Add aperture variable w/getters and setters

 Extend to include RTRectangle that represents the lens (similar to 
RTRectangle defined in the ShadowDepthMap of the spot light)

 RTCore: ComputeImage()

 Add UniformDistribution() method to apply DoF blurring

 Modify current image generation code to include calculating CoC and 
applying UniformDistribution()



Approach 3 Algorithm (Yu, 2004) 

[10]

 Algorithm developed by Tin-Tin Yu from Michigan Technological University 

[10]

 Procedure involves calculating CoC, then applying a Uniform Distribution 

algorithm to blur the pixel and distribute light (Yu, 2004) [10]

 Our approach differs in that Yu manually calculates object depth distances 

(Z ← Znear*Zfar / (Zfar - z*(Zfar-Znear)) (Yu, 2004) [10]), but ours has this 

information already calculated

Yu, 2004 [10]

Yu, 2004 [10]

Yu, 2004 [10]

Yu, 2004 [10]



Risk Evaluation



Potential problems with our 

implementation strategy
 Performance

 If resolution is high, rendering will be slower

 Algorithm is “software-based and depends on processor speed and 
memory bandwidth” (Yu, 2004) [10], not taking advantage of the GPU

 Render time will be slightly slower than original image render time due to 
additional calculation of CoC for each pixel

 Usability

 To obtain new rendered images after adjusting focal distance and aperture 
controls, user has to click “Re-render” button each time

 Accuracy

 As described by algorithm’s author, Tin-Tin Yu, “reflected objects aren’t 
rendered with accurate depth of field because the algorithm only takes into 
account the depth of the mirror’s surface and not the depth of the reflected 
objects” (Yu, 2004) [10]



Questions?



References

1. Hart, J. C. (n.d.). Distributed Ray Tracing. Retrieved February/March, 2016, from 
http://luthuli.cs.uiuc.edu/~daf/courses/computergraphics/week3/distributed-
final.pdf 

2. Distribution raytracing. (n.d.). Retrieved February/March, 2016, from 
http://www.cs.unc.edu/~jpool/COMP870/Assignment2/ 

3. IneQuation (2012, April 04). How to implement Depth of Field in Ray Tracer? 
Retrieved February/March, 2016, from 
http://stackoverflow.com/questions/10012219/how-to-implement-depth-of-
field-in-ray-tracer 

4. Lee, Skeel (2007, March). CG:Skeelogy - Depth Of Field Using Raytracing. 
Retrieved February/March, 2016, from http://cg.skeelogy.com/depth-of-field-
using-raytracing/ 

5. Hammon, E., Jr. (2004). GPU Gems 3 - Chapter 28. Practical Post-Process Depth 
of Field. Retrieved February/March, 2016, from 
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html



References Cont.

6. Demers, J. (2004). GPU Gems - Chapter 23. Depth of Field: A Survey of Techniques. 
Retrieved February/March, 2016, from 
http://http.developer.nvidia.com/GPUGems/gpugems_ch23.html

7. Harvey, S. (2012, December 21). Ray Tracer Part Six – Depth Of Field. Retrieved 
February/March, 2016, from https://steveharveynz.wordpress.com/2012/12/21/ray-
tracer-part-5-depth-of-field/ 

8. Depth of Field (ray tracing) - Graphics Programming and Theory. (2005, October 19). 
Retrieved February/March, 2016, from http://www.gamedev.net/topic/352850-
depth-of-field-ray-tracing/ 

9. Barsky, B. A., & Kosloff, T. J. (n.d.). Algorithms for Rendering Depth of Field Effects in 
Computer Graphics. Retrieved February/March, 2016, from http://zach.in.tu-
clausthal.de/teaching/cg_literatur/Rendering Depth of Field Effects Survey.pdf 

10. Yu, T. (2004). Depth of Field Implementation with OpenGL. Retrieved 
February/March, 2016, from 
http://www.cs.mtu.edu/~shene/PUBLICATIONS/2004/CCSC-MW-2004-
depth_of_field.pdf


