
Depth of Field for

Photorealistic Ray
Traced Images
JESSICA HO AND DUNCAN MACMICHAEL

MARCH 14, 2016

CSS552: TOPICS IN RENDERING

Problem Statement

 The Phong Illumination Model and ray tracing engine explored thus

far are flexible in the kinds of illumination they can simulate, but are

only part of a larger formula for producing photorealistic ray traced

images

 Part of the reason that basic ray tracing looks fake because of

“jagged edges, hard shadows, everything is in focus, objects are

completely still, surfaces are perfectly shiny, and glass is perfectly

clear” (Hart, p. 2) [1]

 Depth of Field is needed as one way to enhance realism

Problems with Computer

Generated Cameras

 In real life, cameras and our eyes filter light through a lens and

control the amount of light allowed onto the image plane (image

sensor or retina), which, according to Demers (2004) [6], causes

some items to appear out of focus depending on their distance
from the focal plane and the projection

 Default 3D camera model does not replicate true camera

functionality (such as controllable focal distance and aperture),

meaning the image is rendered in perfect focus and the viewer

immediately realizes that the image is computer-generated

 Our current camera does provide focal distance but is not
configurable by the user (“Focal Distance = Length(lookAtPoint –

eyePoint)” (Harvey, 2012) [7])

Use Z-Buffer (depth information) to post-

process DoF (Yu, 2004) [10]

Slightly different camera model and
simplified CoC calculation

Simpler camera model with single
aperture coefficient

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]

(Yu, 2004) [10]

Algorithm (Yu, 2004) [10]

 Algorithm developed by Tin-Tin Yu from Michigan Technological University

[10]

 Procedure involves calculating CoC, then applying a Uniform Distribution

algorithm to blur the pixel and distribute light (Yu, 2004) [10]

 Our approach differs in that Yu manually calculates object depth distances

(Z ← Znear*Zfar / (Zfar - z*(Zfar-Znear)) (Yu, 2004) [10]), but ours has this

information already calculated

Yu, 2004 [10]

Yu, 2004 [10]

Yu, 2004 [10]

Yu, 2004 [10]

Implementation

 RTCamera: added lens distance, aperture and focal distance variables w/getters

 RTCore_Compute_DepthOfField: created new class to take existing image and use BlurImage() to blur it with

UniformDistribution method.

 RTCore_Utilities: added utility functions to compute a pixel's height and width (taken from MP1)

 RTCore_ResultStorage: added fourth mResultBlurredImage as fourth Bitmap variable, initialized it with

SetResultColors. Added public Vector3[][] pixelColors framebuffer to use to store original color information in

Vector3 form (which is then used to calculate blurring). This was to avoid converting between

System.Drawing.Color and Vector3, which got messy.

 RTCore_Compute: added line to add computed pixel color to frame buffer to pass in to depth of field

calculations.

 RtCore_Thread: Called BlurImage(mPixelColors) at the end of RTRenderingDone (single-threaded only!). Added

RTBlurredRenderingDone (called by BlurImage function in RTCore_Compute_DepthOfField) which calls

RTWindow.SetBlurredImage

 RTWindow: Added SetBlurredImage, which replaced the pixel coverage Bitmap with our blurred image Bitmap.

Changed RTWindow_Paint routine for repainting the subwindows to have mMaskGraphics draw the

mResultBlurredImage instead of the mPixelCoverage if ShowDepth is not checked. Added reBlurImage method

to re-blur the image based on new input from the user.

 RTCore_SceneDB: added SetCameraBlurring method to set the camera variables based on the user's input

 3DPreviewerDesigner: added blurring controls.

Results 1
Blurring on the outer edges of the
image is seen in particular along the
checkered pattern of the image. This
illustrates an exceedingly large CoC
due to the controls we used.

Results 2
Having the values set below, gave the illusion that
the CoC was being calculated correctly and that
the darker area was in focus, however, this is not the
case. The CoC of the darker area below is still out of
focus. This effect was achieved with non-realistic
lens distance and focal distance values.

Results 3
The entirety of the image is blurred with
a large aperture. This is true to life where
large apertures cause anything far
away from the camera to be very
blurred.

References

1. Hart, J. C. (n.d.). Distributed Ray Tracing. Retrieved February/March, 2016, from
http://luthuli.cs.uiuc.edu/~daf/courses/computergraphics/week3/distributed-
final.pdf

2. Distribution raytracing. (n.d.). Retrieved February/March, 2016, from
http://www.cs.unc.edu/~jpool/COMP870/Assignment2/

3. IneQuation (2012, April 04). How to implement Depth of Field in Ray Tracer?
Retrieved February/March, 2016, from
http://stackoverflow.com/questions/10012219/how-to-implement-depth-of-
field-in-ray-tracer

4. Lee, Skeel (2007, March). CG:Skeelogy - Depth Of Field Using Raytracing.
Retrieved February/March, 2016, from http://cg.skeelogy.com/depth-of-field-
using-raytracing/

5. Hammon, E., Jr. (2004). GPU Gems 3 - Chapter 28. Practical Post-Process Depth
of Field. Retrieved February/March, 2016, from
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

References Cont.

6. Demers, J. (2004). GPU Gems - Chapter 23. Depth of Field: A Survey of Techniques.
Retrieved February/March, 2016, from
http://http.developer.nvidia.com/GPUGems/gpugems_ch23.html

7. Harvey, S. (2012, December 21). Ray Tracer Part Six – Depth Of Field. Retrieved
February/March, 2016, from https://steveharveynz.wordpress.com/2012/12/21/ray-
tracer-part-5-depth-of-field/

8. Depth of Field (ray tracing) - Graphics Programming and Theory. (2005, October 19).
Retrieved February/March, 2016, from http://www.gamedev.net/topic/352850-
depth-of-field-ray-tracing/

9. Barsky, B. A., & Kosloff, T. J. (n.d.). Algorithms for Rendering Depth of Field Effects in
Computer Graphics. Retrieved February/March, 2016, from http://zach.in.tu-
clausthal.de/teaching/cg_literatur/Rendering Depth of Field Effects Survey.pdf

10. Yu, T. (2004). Depth of Field Implementation with OpenGL. Retrieved
February/March, 2016, from
http://www.cs.mtu.edu/~shene/PUBLICATIONS/2004/CCSC-MW-2004-
depth_of_field.pdf

