RAY TRACING WITH THE BSP
TREE

Kelvin Sung Peter Shirley
University of liinois and ndiana University
Urbana, lliinois Bloomington, Indiang

N

Introduction

In order to speed up the intersection calculation in ray tracing programs,
people have implemented divide-and-conquer strategies such as hierar-
chical bounding volumes and octrees. Uniform subdivision (essentially a
three-dimensional binsort) has also been used to speed up this calcula-
tion.

Uniform subdivision is undesirable for applications where the objects
may be unevenly distributed in space. This is because the amount of
memory needed for uniform subdivision is proportional to the highest
density of objects, rather than the total number. Hierarchical bounding
volumes can be difficult to implement effectively, but can be used to good
effect (Kay and Kajiya, 1986). Hierarchical space subdivision techniques
do not suffer the memory problems of uniform subdivision and are also
relatively easy to implement. In this Gem, we discuss what we think is the
best overall hierarchical subdivision technique currently known.

It is often believed that adaptive spatial subdivision approaches to
accelerating the tracing of a ray are messy and hard to implement. In our
experience with different spatial structures and traversal algorithms, we
have found this view to be untrue. It is straightforward to implement the
Linear Time Tree Walking algorithm, as proposed by Arvo (1988), on a
Binary Space Partitioning (BSP) tree. The resulting system outperforms
all of the spatial subdivision approaches we have experienced.

We have implemented and compared the performance of several traver-
sal algorithms on an octree (Glassner, 1984; Arvo, 1988; Sung, 1991) and
on a BSP tree (Kaplan, 1985; Arvo, 1988). In order to obtain meaningful

Copyright © 1992 by Academic Press, Ine.

All rights of reproduction in any form reserved.
ISBN 0-12-409670-0 (IBM)

ISBN 0-12-409671-9 (Mac)

271

272

RAY TRACING AND RADIOSITY

comparisons, we have kept the rest of our ray tracing system unchanged
while replacing the spatial structure building and traversal components
for each of these methods. Our experience shows that the Linear Time
Tree Walking method (Arvo, 1988) is consistently at least 10% faster than
the rest and is usually better than that. We have observed that implement-
ing the tree walking algorithm on a BSP tree and on an octree results in
similar performance, but that the implementation is more straightforward
on a BSP tree. Finally, it should be pointed out that the recursive
traversal algorithm introduced independently by Jansen (1986) is a
different implementation of the same tree walking idea.

There are two basic modules in a BSP tree intersection code. The first
module builds the tree by recursively cutting the bounding box of all
objects along a median spatial plane. The second module tracks a ray
through the leaf nodes of the BSP tree checking for intersections.

The BSP tree is built by InitBinTree() and Subdivide(), RayTreeln-
tersect() is the actual tree walking traversal of the BSP tree following a
ray. These are the key functions necessary to implement the algorithm.
Subdivide() builds the BSP tree by subdividing along the midpoint of the
current node’s bounding volume.

Subdivide (Current Node, CurrentTree Depth, CurrentSubdividingAxis)
if ((CurrentNode contains too many primitives) and (CurrentTreeDepth
is not too deep)) then

begin
Children of CurrentNode < CurrentNode’s Bounding Volume
/*Note that child[0].max.DividingAxis and
Childl1].min.DividingAxis are always equal.* /
/*Depending on CurrentSubdividingAxis, DividingAxis can be
either x, v, or 2./
if (CurrentSubdividingAxis is X-Axis) then begin
childlO].max.x « child[1].min.x < mid-point of CurrentNode’s
X-Bound
NextSubdivideAxis « Y-Axis
end else if (CurrentSubdividingAxis is Y-Axis) then begin
child[0].max.y « child[1].min.y < mid-point of
CurrentNode’s Y-Bound
NextSubdivideAxis « Z-Axis
end else begin .
child[0]. max.z « child[1).min.z « mid-point of
CurrentNode’s Z-Bound
NextSubdivideAxis < X-Axis

|
|

VI.I RAY TRACING WITH THE BSP TREE

end
for (each of the primitives in CurrentNode’s object link list) do
if {the primitive is within children’s bounding volume) then
add the primitive fo the children’s object link list
Subdivide (child[0], CurrentTreeDepth + 1, NextSubdivideAxis)

Subdivide (child[1], CurrentTreeDepth + 1, NextSubdivideAxis)
end

As suggested by Arvo (1988), RayTreelntersect() avoids recursive proce-
dure calls in the inner loop of tree walking by maintaining an explicit
stack. The pseudo-code given here is based on Arvo’s article in the Ray
Trafzmg News, where recursion is used for ease of understanding. When
calling RayTreelntersect() the first time, initial values of min and max
should be the distances (measured from the ray origin along the ray
Fhrection) to the two intersecting points between the ray and the bound-
ing volume of the root of the BSP tree. Notice that if a ray originates from
inside the BSP tree, then the initial value of min will be negative.

RayTreelntersect (Ray, Node, min, max)
if (Node is NIL) then return [“no intersect”]
if (Node is a leaf) then begin
intersect Ray with each primitive in the object link list
discarding those farther away than “max’’
return [“object with closest intersection point’’]
end
dist « signed distance along Ray to the cutting plane of the Node
near « child of Node for half-space containing the origin of Ray
far « the “other” child of Node —i.e. not equal to near
if ((dist > max) or (dist < 0)) then /*Whole interval is on near side* /
return [RayTreelntersect (Ray, near, min, max)]
else if (dist < min) then /*Whole interval is on far side™ /
return [RayTreelntersect (Ray, far, min, max)]
else begin /*the interval intersects the plane* /
hit_data < RayTreelntersect (Ray, near, min, dist) /*test near side* /
if hit_data indicates that there was a hit then return [hit_data)

return [RayTreelntersect (Ray, near, dist, max)] /*test far side* /
end

273

274

RAY TRACING AND RADIOSITY

There are a few standard link list functions that are not listed in the
C code: FirstOfLinkList(), NextOfLinkList(), AddToLinkList(), and
DuplicateLinkList().

One possible improvement over the basic algorithm is to keep track of
the nearest intersection and its distance, regardless of whether it is inside
of the current node. With this information, as soon as a node is found that
starts beyond this nearest intersection distance, we know we are done.

If an object spans multiple tree nodes (spatial cells), then the intersec-
tion calculation between this object and a given ray may need to be
carried out multiple times, once in each node traversed by the ray. The
mailbox idea was proposed (Amanatides and Woo, 1987; Arnaldi et al,
1987) to avoid this problem. However, it is observed that this technique is
effective only when primitives in the scene are large compared to the
spatial cells. When the size of the primitives in a scene is small compared
to the size of the spatial cells, the mailbox implementation may slow
down the rendering process (Sung, 1991). Also, the mailbox implementa-
tion requires the scene database to be updated after each intersection
calculation. This implies that to parallelize the algorithm, some kind of
database coherence policy must be administrated; this would increase the
complexity of an implementation. Based on these observations, we have
chosen not to include the mailbox enhancement in our code.

Other work on BSP trees includes Fussell and Subramanian (1988),
MacDonald and Booth (1989), and Subramanian and Fussell (1991).

Acknowledgments

We would like to thank Jim Arvo, who encouraged us to write up our
experience as a Gem; Frederik Jansen for discussing his experience with
BSP Trees; and K. R. Subramanian for sharing the details of his work.

See also G3, E.2.

&

