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Machine Learning

Math Essentials



Jeff Howbert Introduction to Machine Learning       Winter 2014               2

Machine learning is part of both statistics and computer 
science
– Probability
– Statistical inference
– Validation
– Estimates of error, confidence intervals

Linear algebra
– Hugely useful for compact representation of linear 

transformations on data
– Dimensionality reduction techniques

Optimization theory

Areas of math essential to machine learning
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There are lots of easy-to-use machine learning 
packages out there.
After this course, you will know how to apply 
several of the most general-purpose algorithms.

HOWEVER
To get really useful results, you need good 
mathematical intuitions about certain general 
machine learning principles, as well as the inner 
workings of the individual algorithms.

Why worry about the math?
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These intuitions will allow you to:
– Choose the right algorithm(s) for the problem
– Make good choices on parameter settings, 

validation strategies
– Recognize over- or underfitting
– Troubleshoot poor / ambiguous results
– Put appropriate bounds of confidence / 

uncertainty on results
– Do a better job of coding algorithms or 

incorporating them into more complex 
analysis pipelines

Why worry about the math?
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a ∈ A set membership: a is member of set A
| B | cardinality: number of items in set B
|| v || norm: length of vector v
∑ summation
∫ integral
ℜ the set of real numbers
ℜn real number space of dimension n

n = 2 : plane or 2-space
n = 3 : 3- (dimensional) space
n > 3 : n-space or hyperspace

Notation
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x, y, z, vector (bold, lower case)
u, v
A, B, X matrix (bold, upper case)
y = f( x ) function (map): assigns unique value in

range of y to each value in domain of x
dy / dx derivative of y with respect to single

variable x
y = f( x ) function on multiple variables, i.e. a

vector of variables; function in n-space
∂y / ∂xi partial derivative of y with respect to

element i of vector x

Notation
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Intuition:
In some process, several outcomes are possible.  
When the process is repeated a large number of 
times, each outcome occurs with a characteristic 
relative frequency, or probability.  If a particular 
outcome happens more often than another 
outcome, we say it is more probable.

The concept of probability
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Arises in two contexts:
In actual repeated experiments.
– Example: You record the color of 1000 cars driving 

by.  57 of them are green.  You estimate the 
probability of a car being green as 57 / 1000 = 0.0057.

In idealized conceptions of a repeated process.
– Example: You consider the behavior of an unbiased 

six-sided die.  The expected probability of rolling a 5 is 
1 / 6 = 0.1667.

– Example: You need a model for how people’s heights 
are distributed.  You choose a normal distribution 
(bell-shaped curve) to represent the expected relative 
probabilities.

The concept of probability
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A probability space is a random process or experiment with 
three components:
– Ω, the set of possible outcomes O

number of possible outcomes = | Ω | = N

– F, the set of possible events E
an event comprises 0 to N outcomes
number of possible events = | F | = 2N

– P, the probability distribution
function mapping each outcome and event to real number 

between 0 and 1 (the probability of O or E)
probability of an event is sum of probabilities of possible 

outcomes in event

Probability spaces
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1. Non-negativity:
for any event E ∈ F, p( E ) ≥ 0

2. All possible outcomes:
p( Ω ) = 1

3. Additivity of disjoint events:
for all events E, E’ ∈ F where E ∩ E’ = ∅,
p( E U E’ ) = p( E ) + p( E’ )

Axioms of probability
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Define | Ω | = number of possible outcomes

Discrete space | Ω | is finite
– Analysis involves summations ( ∑ )

Continuous space | Ω | is infinite
– Analysis involves integrals ( ∫ )

Types of probability spaces
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Single roll of a six-sided die
– 6 possible outcomes: O = 1, 2, 3, 4, 5, or 6
– 26 = 64 possible events

example: E = ( O ∈ { 1, 3, 5 } ), i.e. outcome is odd

– If die is fair, then probabilities of outcomes are equal
p( 1 ) = p( 2 ) = p( 3 ) = 
p( 4 ) = p( 5 ) = p( 6 ) = 1 / 6

example: probability of event E = ( outcome is odd ) is
p( 1 ) + p( 3 ) + p( 5 ) = 1 / 2

Example of discrete probability space
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Three consecutive flips of a coin
– 8 possible outcomes: O = HHH, HHT, HTH, HTT, 

THH, THT, TTH, TTT
– 28 = 256 possible events

example: E = ( O ∈ { HHT, HTH, THH } ), i.e. exactly two flips 
are heads

example: E = ( O ∈ { THT, TTT } ), i.e. the first and third flips 
are tails

– If coin is fair, then probabilities of outcomes are equal
p( HHH ) = p( HHT ) = p( HTH ) = p( HTT ) =
p( THH ) = p( THT ) = p( TTH ) = p( TTT ) = 1 / 8

example: probability of event E = ( exactly two heads ) is
p( HHT ) + p( HTH ) + p( THH ) = 3 / 8

Example of discrete probability space
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Height of a randomly chosen American male
– Infinite number of possible outcomes: O has some 

single value in range 2 feet to 8 feet
– Infinite number of possible events

example: E = ( O | O < 5.5 feet ), i.e. individual chosen is less 
than 5.5 feet tall

– Probabilities of outcomes are not equal, and are 
described by a continuous function, p( O )

Example of continuous probability space
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Height of a randomly chosen American male
– Probabilities of outcomes O are not equal, and are 

described by a continuous function, p( O )
– p( O ) is a relative, not an absolute probability

p( O ) for any particular O is zero
∫ p( O ) from O = -∞ to ∞ (i.e. area under curve) is 1
example: p( O = 5’8” ) > p( O = 6’2” )
example: p( O < 5’6” ) = ( ∫ p( O ) from O = -∞ to  5’6” ) ≈ 0.25

Example of continuous probability space
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Discrete: probability mass function (pmf)

example:
sum of two
fair dice

Continuous: probability density function (pdf)

example:
waiting time between
eruptions of Old Faithful
(minutes) 

Probability distributions
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A random variable X is a function that associates a number x with 
each outcome O of a process

– Common notation: X( O ) = x, or just X = x
Basically a way to redefine (usually simplify) a probability space to a 
new probability space

– X must obey axioms of probability (over the possible values of x)
– X can be discrete or continuous

Example: X = number of heads in three flips of a coin
– Possible values of X are 0, 1, 2, 3
– p( X = 0 ) = p( X = 3 ) = 1 / 8 p( X = 1 ) = p( X = 2 ) = 3 / 8
– Size of space (number of “outcomes”) reduced from 8 to 4

Example: X = average height of five randomly chosen American men 
– Size of space unchanged (X can range from 2 feet to 8 feet), but 

pdf of X different than for single man 

Random variables
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Scenario
– Several random processes occur (doesn’t matter 

whether in parallel or in sequence)
– Want to know probabilities for each possible 

combination of outcomes
Can describe as joint probability of several random 
variables
– Example: two processes whose outcomes are 

represented by random variables X and Y. Probability 
that process X has outcome x and process Y has 
outcome y is denoted as:

p( X = x, Y = y )

Multivariate probability distributions
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Example of multivariate distribution

joint probability: p( X = minivan, Y = European ) = 0.1481
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Marginal probability
– Probability distribution of a single variable in a 

joint distribution
– Example: two random variables X and Y:

p( X = x ) = ∑b=all values of Y p( X = x, Y = b ) 
Conditional probability
– Probability distribution of one variable given

that another variable takes a certain value
– Example: two random variables X and Y:

p( X = x | Y = y ) = p( X = x, Y = y ) / p( Y = y ) 

Multivariate probability distributions
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Example of marginal probability

marginal probability: p( X = minivan ) = 0.0741 + 0.1111 + 0.1481 = 0.3333
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sedan
minivan

SUV
sport

American

Asian

European

0

0.05

0.1
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X = model typeY = manufacturer
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Example of conditional probability

conditional probability: p( Y = European | X = minivan ) =
0.1481 / ( 0.0741 + 0.1111 + 0.1481 ) = 0.4433
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Same concepts of joint, marginal, and conditional 
probabilities apply (except use integrals)
Example: three-component Gaussian mixture in two 
dimensions

Continuous multivariate distribution
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Given:
A discrete random variable X, with possible 
values x = x1, x2, … xn

Probabilities p( X = xi ) that X takes on the 
various values of xi

A function yi = f( xi ) defined on X

The expected value of f is the probability-weighted 
“average” value of f( xi ):

E( f ) = ∑i p( xi ) ⋅ f( xi )

Expected value
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Process: game where one card is drawn from the deck
– If face card, dealer pays you $10
– If not a face card, you pay dealer $4

Random variable X = { face card, not face card }
– p( face card ) = 3/13
– p( not face card ) = 10/13

Function f( X ) is payout to you
– f( face card ) = 10
– f( not face card ) = -4

Expected value of payout is:
E( f ) = ∑i p( xi ) ⋅ f( xi ) = 3/13 ⋅ 10 + 10/13 ⋅ -4 = -0.77

Example of expected value
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E( f ) = ∫x = a → b p( x ) ⋅ f( x )

Expected value in continuous spaces
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Mean (μ)
f( xi ) = xi ⇒ μ = E( f ) = ∑i p( xi ) ⋅ xi

– Average value of X = xi, taking into account probability 
of the various xi

– Most common measure of “center” of a distribution

Compare to formula for mean of an actual sample

Common forms of expected value (1)

∑
=

=
n

i
ix

N 1

1μ
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Variance (σ2)
f( xi ) = ( xi - μ ) ⇒ σ2 = ∑i p( xi ) ⋅ ( xi - μ )2

– Average value of squared deviation of X = xi from 
mean μ, taking into account probability of the various xi

– Most common measure of “spread” of a distribution
– σ is the standard deviation

Compare to formula for variance of an actual sample

Common forms of expected value (2)

∑
=

−
−

=
n

i
ix

N 1

22 )(
1

1 μσ
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Covariance
f( xi ) = ( xi - μx ),   g( yi ) = ( yi - μy ) ⇒

cov( x, y ) = ∑i p( xi , yi ) ⋅ ( xi - μx ) ⋅ ( yi - μy )
– Measures tendency for x and y to deviate from their means in 

same (or opposite) directions at same time

Compare to formula for covariance of actual samples

Common forms of expected value (3)

no
 c
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Pearson’s correlation coefficient is covariance normalized 
by the standard deviations of the two variables

– Always lies in range -1 to 1
– Only reflects linear dependence between variables

Correlation

yx

yxyx
σσ

),cov(),(corr =

Linear dependence 
with noise

Linear dependence 
without noise

Various nonlinear 
dependencies
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Given: event A, which can occur or not

p( not A ) = 1 - p( A )

Complement rule

areas represent relative probabilities

A

Ω

not A
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Given: events A and B, which can co-occur (or not)

p( A, B ) = p( A | B ) ⋅ p( B )
(same expression given previously to define conditional probability)

Product rule

areas represent relative probabilities

(A, not B)

B( A, B )

(not A, B)

A
(not A, not B)

Ω
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Probability that a man has white hair (event A) 
and is over 65 (event B) 
– p( B ) = 0.18
– p( A | B ) = 0.78
– p( A, B ) = p( A | B ) ⋅ p( B ) =

0.78 ⋅ 0.18 =
0.14

Example of product rule
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Given: events A and B, which can co-occur (or not)

p( A ) = p( A, B ) + p( A, not B )
(same expression given previously to define marginal probability)

Rule of total probability

areas represent relative probabilities

(A, not B)

B( A, B )

(not A, B)

A
(not A, not B)

Ω
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Given: events A and B, which can co-occur (or not)

p( A | B ) = p( A )    or    p( A, B ) = p( A ) ⋅ p( B )

Independence

areas represent relative probabilities

(A, not B)

B

( A, B )

(not A, B)

A

(not A, not B)

Ω
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Independence:
– Outcomes on multiple rolls of a die
– Outcomes on multiple flips of a coin
– Height of two unrelated individuals
– Probability of getting a king on successive draws from 

a deck, if card from each draw is replaced
Dependence:
– Height of two related individuals
– Duration of successive eruptions of Old Faithful
– Probability of getting a king on successive draws from 

a deck, if card from each draw is not replaced

Examples of independence / dependence
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Independence: All manufacturers have identical product 
mix. p( X = x | Y = y ) = p( X = x ).
Dependence: American manufacturers love SUVs, 
Europeans manufacturers don’t.

Example of independence vs. dependence
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Bayes rule

A way to find conditional probabilities for one variable when 
conditional probabilities for another variable are known.

p( B | A ) = p( A | B ) ⋅ p( B ) / p( A )
where p( A ) = p( A, B ) + p( A, not B )

(A, not B)

B( A, B )

(not A, B)

A
(not A, not B)

Ω
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Bayes rule

posterior probability ∝ likelihood × prior probability

p( B | A )  =  p( A | B )  ⋅ p( B )  /  p( A )

(A, not B)

B( A, B )

(not A, B)

A
(not A, not B)

Ω
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Marie is getting married tomorrow at an outdoor ceremony in the 
desert.  In recent years, it has rained only 5 days each year. 
Unfortunately, the weatherman is forecasting rain for tomorrow. When 
it actually rains, the weatherman has forecast rain 90% of the time. 
When it doesn't rain, he has forecast rain 10% of the time. What is the 
probability it will rain on the day of Marie's wedding? 
Event A: The weatherman has forecast rain. 
Event B: It rains. 
We know:

– p( B ) = 5 / 365 = 0.0137   [ It rains 5 days out of the year. ]
– p( not B ) = 360 / 365 = 0.9863
– p( A | B ) = 0.9   [ When it rains, the weatherman has forecast 

rain 90% of the time. ]
– p( A | not B ) = 0.1   [When it does not rain, the weatherman has 

forecast rain 10% of the time.]

Example of Bayes rule
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We want to know p( B | A ), the probability it will rain on 
the day of Marie's wedding, given a forecast for rain by 
the weatherman. The answer can be determined from 
Bayes rule:

1. p( B | A ) = p( A | B ) ⋅ p( B ) / p( A )
2. p( A ) = p( A | B ) ⋅ p( B ) + p( A | not B ) ⋅ p( not B ) = 

(0.9)(0.014) + (0.1)(0.986) = 0.111
3. p( B | A ) = (0.9)(0.0137) / 0.111 = 0.111 

The result seems unintuitive but is correct. Even when the 
weatherman predicts rain, it only rains only about 11% of 
the time. Despite the weatherman's gloomy prediction, it 
is unlikely Marie will get rained on at her wedding. 

Example of Bayes rule, cont’d.
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ADD: When you want to allow for occurrence of 
any of several possible outcomes of a single
process.  Comparable to logical OR.

MULTIPLY: When you want to allow for 
simultaneous occurrence of particular outcomes 
from more than one process.  Comparable to 
logical AND.
– But only if the processes are independent.

Probabilities: when to add, when to multiply
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1) Operations on or between vectors and matrices
2) Coordinate transformations
3) Dimensionality reduction
4) Linear regression
5) Solution of linear systems of equations
6) Many others

Applications 1) – 4) are directly relevant to this 
course.  Today we’ll start with 1).

Linear algebra applications
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Most common form of data 
organization for machine 
learning is a 2D array, where
– rows represent samples 

(records, items, datapoints)
– columns represent attributes 

(features, variables)
Natural to think of each sample 
as a vector of attributes, and 
whole array as a matrix

Why vectors and matrices?

Refund Marital 
Status 

Taxable 
Income Cheat

Yes Single 125K No 

No Married 100K No 

No Single 70K No 

Yes Married 120K No 

No Divorced 95K Yes 

No Married 60K No 

Yes Divorced 220K No 

No Single 85K Yes 

No Married 75K No 

No Single 90K Yes 
10 

vector

matrix
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Definition: an n-tuple of values (usually real 
numbers).
– n referred to as the dimension of the vector
– n can be any positive integer, from 1 to infinity

Can be written in column form or row form
– Column form is conventional
– Vector elements referenced by subscript

Vectors

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nx

x
M
1

x ( )
transpose"" means T

1
T

nxx L=x
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Can think of a vector as:
– a point in space or
– a directed line segment with a magnitude and 

direction 

Vectors



Jeff Howbert Introduction to Machine Learning       Winter 2014               47

Addition of two vectors
– add corresponding elements

– result is a vector

Scalar multiplication of a vector
– multiply each element by scalar

– result is a vector

Vector arithmetic

( )T11 nn yxyx ++=+= Lyxz

( )T1 naxxaa L== xy
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Dot product of two vectors
– multiply corresponding elements, then add products

– result is a scalar

Dot product alternative form

Vector arithmetic

∑
=

=⋅=
n

i
ii yxa

1
yx

( )θ cos yxyx =⋅=a

y

x
θ
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Definition: an m x n two-dimensional array of 
values (usually real numbers).
– m rows
– n columns

Matrix referenced by two-element subscript
– first element in

subscript is row
– second element in

subscript is column
– example: A24 or a24 is element in second row, 

fourth column of A

Matrices

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mnm

n

aa

aa

L

MOM

L

1

111

A
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A vector can be regarded as special case of a 
matrix, where one of matrix dimensions = 1.
Matrix transpose (denoted T)
– swap columns and rows

row 1 becomes column 1, etc.

– m x n matrix becomes n x m matrix
– example:

Matrices

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
81364
30172

A

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−=

83
10
31

67
42

TA
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Addition of two matrices
– matrices must be same size
– add corresponding elements:

cij = aij + bij
– result is a matrix of same size

Scalar multiplication of a matrix
– multiply each element by scalar:

bij = d ⋅ aij
– result is a matrix of same size

Matrix arithmetic

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

=+=

mnmnmm

nn

baba

baba

L

MOM

L

11

111111

BAC

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅⋅

⋅⋅

=⋅=

mnm

n

adad

adad
d

L

MOM

L

1

111

AB
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Matrix-matrix multiplication
– vector-matrix multiplication just a special case

TO THE BOARD!!

Multiplication is associative
A ⋅ ( B ⋅ C ) = ( A ⋅ B ) ⋅ C

Multiplication is not commutative
A ⋅ B ≠ B ⋅ A (generally)

Transposition rule:
( A ⋅ B )T = B T ⋅ A T

Matrix arithmetic
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RULE: In any chain of matrix multiplications, the 
column dimension of one matrix in the chain must 
match the row dimension of the following matrix 
in the chain.
Examples

A 3 x 5 B 5 x 5 C 3 x 1
Right:

A ⋅ B ⋅ AT CT ⋅ A ⋅ B AT ⋅ A ⋅ B C ⋅ CT ⋅ A
Wrong:

A ⋅ B ⋅ A C ⋅ A ⋅ B A ⋅ AT ⋅ B CT ⋅ C ⋅ A

Matrix arithmetic
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Orthogonal projection of y onto x
– Can take place in any space of dimensionality > 2
– Unit vector in direction of x is

x / || x ||
– Length of projection of y in

direction of x is
|| y || ⋅ cos(θ )

– Orthogonal projection of
y onto x is the vector

projx( y )   =   x ⋅ || y || ⋅ cos(θ ) / || x ||   =
[ ( x ⋅ y ) / || x ||2 ] x (using dot product alternate form)

Vector projection

y

x
θ

projx( y )
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Maximum likelihood
Expectation maximization
Gradient descent

Optimization theory topics
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