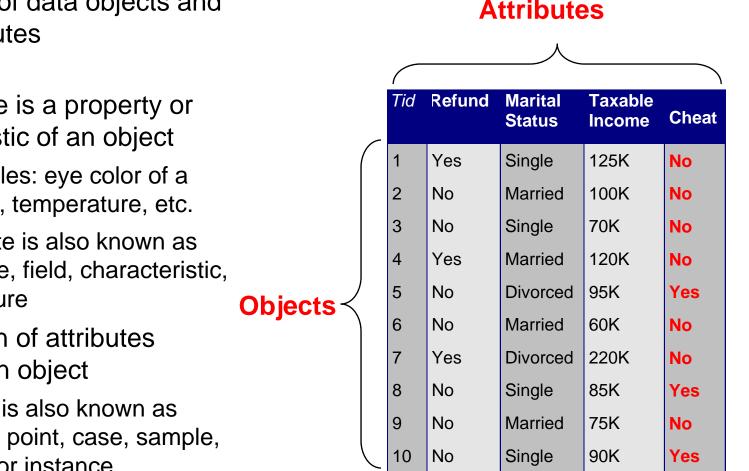
Machine Learning

Data

Jeff Howbert


Introduction to Machine Learning

1

Data topics

- Types of attributes
 Types
- Types of datasets
- Data quality issues
 Preprocessing
- Transformations
 Summary statistics
- Visualization

What is data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attribute values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Types of attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Properties of attributes

- The type of an attribute depends on which of the following properties it possesses:
 - Distinctness: = \neq
 - Order: < >
 - Addition: + -
 - Multiplication: * /
 - Nominal attribute:
 - Ordinal attribute:
 - Interval attribute:
 - Ratio attribute:

distinctness

distinctness & order

- distinctness, order & addition
- all four properties

Attribute Type	Description	Examples	Statistical Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: { <i>male,</i> <i>female</i> }	mode, entropy, contingency correlation, χ^2 test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, { <i>good,</i> <i>better, best</i> }, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Attribute Level	Allowed Transformations	Comments
Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., <i>new_value</i> = <i>f(old_value)</i> where <i>f</i> is a monotonic function.	An attribute encompassing the notion of { good, better best } can be represented equally well by values, e.g. {1, 2, 3} or {0.5, 1, 10}.
Interval	<i>new_value</i> = <i>a</i> * <i>old_value</i> + <i>b</i> where a and b are constants	The Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	new_value = a * old_value	Length can be measured in meters or feet.

Discrete and continuous attributes

• Discrete attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

• Continuous attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Types of data sets

Record

- Data matrix
- Document data
- Transaction data
- Graph
 - World Wide Web
 - Molecular structures
- Ordered
 - Spatial data
 - Temporal (time series) data
 - Sequential data
 - Genetic sequence data

Record data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	fund Marital Taxable Status Income		Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Data matrix

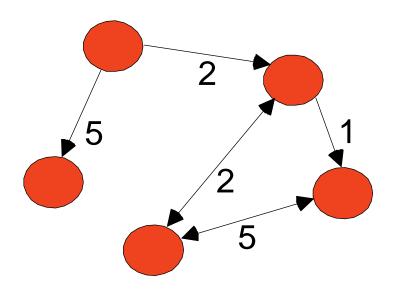
- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute.
- Such data set can be represented by an *m* x *n* matrix, where there are *m* rows, one for each object, and *n* columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document data

- Each document becomes a 'term' vector,
 - each term is a component (attribute) of the vector
 - the value of each component is the number of times the corresponding term occurs in the document.

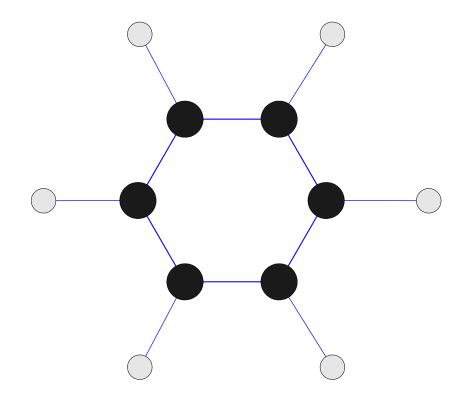
	team	coach	play	ball	score	game	win	lost	timeout	season
document 1	3	0	5	0	2	6	0	2	0	2
document 2	0	7	0	2	1	0	0	3	0	0
document 3	0	1	0	0	1	2	2	0	3	0


Transaction data

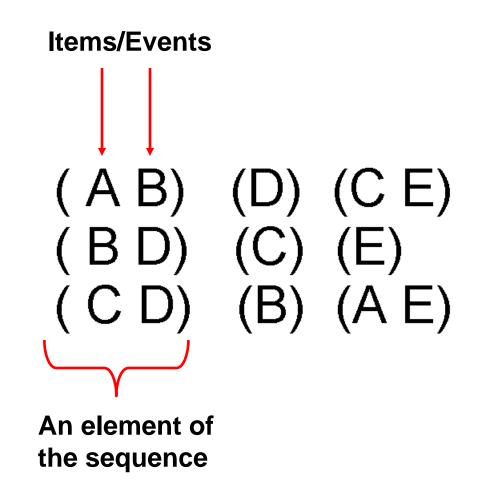
- A special type of record data, where
 - Each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph data


Examples: Generic graph and HTML Links

 Data Mining Graph Partitioning Parallel Solution of Sparse Linear System of Equations N-Body Computation and Dense Linear System Solvers

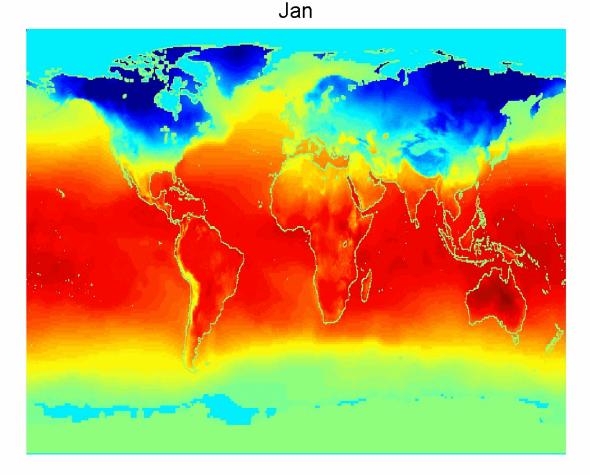

Chemical data

• Benzene molecule: C₆H₆

Ordered data

Sequences of transactions

Ordered data


• Genomic sequence data

GGTTCCGCCTTCAGCCCGCGCCC CGCAGGGCCCGCCCGCGCGCGCG GAGAAGGGCCCGCCTGGCGGGGCG GGGGGAGGCGGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC

Ordered data

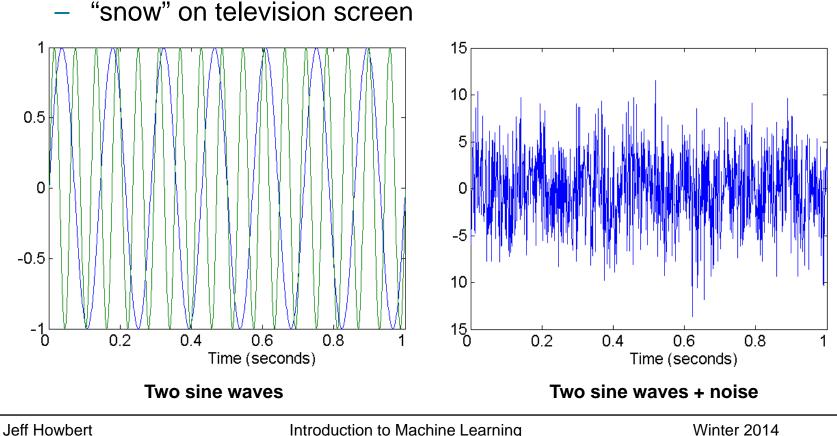
Spatio-temporal data

Average monthly temperature of land and ocean

ιIJ

Stages of knowledge extraction

Jeff Howbert

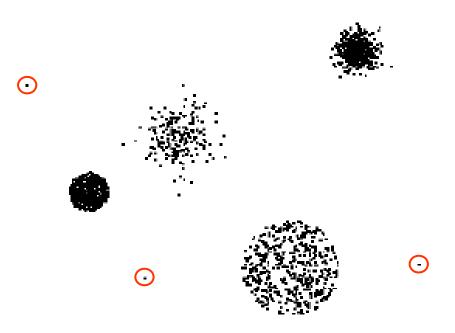

Data quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - noise and outliers
 - missing values
 - duplicate data

Noise

- Noise refers to random modification of original values
- Examples:
 - distortion of a person's voice when talking on a poor phone



Noise

- Dealing with noise
 - Mostly you have to live with it
 - Certain kinds of smoothing or averaging can be helpful
 - In the right domain (e.g. signal processing), transformation to a different space can get rid of majority of noise

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Outliers

Dealing with outliers

- There are robust statistical methods for detecting outliers
- In some situations, you want to get rid of outliers
 - but be judicious they may carry useful, even important information
- In other situations, the outliers are the objects of interest
 - anomaly detection

Missing values

Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate data objects
 - Estimate missing values (imputation)
 - Ignore the missing value during analysis
 - Replace with all possible values (weighted by their probabilities)

Duplicate data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeous sources
- Example:
 - Same person with multiple email addresses

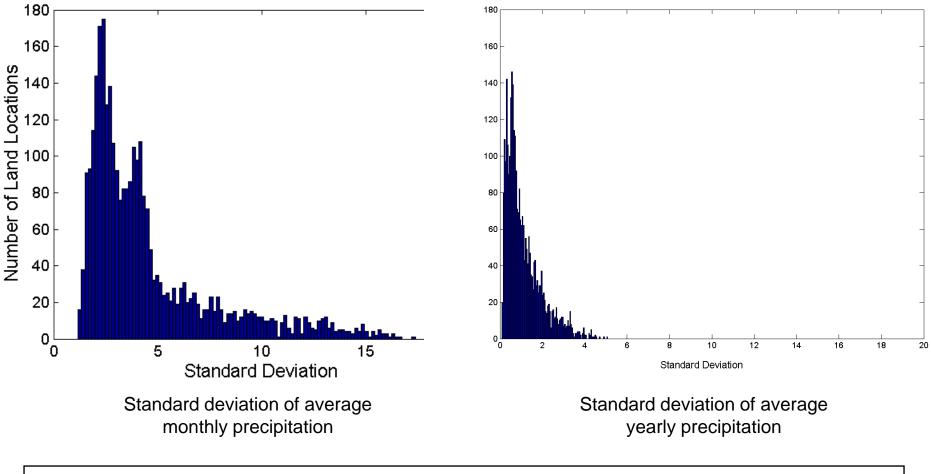
Data cleaning

- Includes process of dealing with duplicate data issues

Data preprocessing

- Aggregation
- Sampling
- Discretization and binarization
- Attribute transformation
- Feature creation
- Feature selection
 - Choose subset of existing features
- Dimensionality reduction
 - Create smaller number of new features through linear or nonlinear combination of existing features

Aggregation


 Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc.
- More "stable" data
 - Aggregated data tends to have less variability

Aggregation

Variation of precipitation in Australia

Sampling

- Sampling is the main technique employed for data selection.
 - Often used for both preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

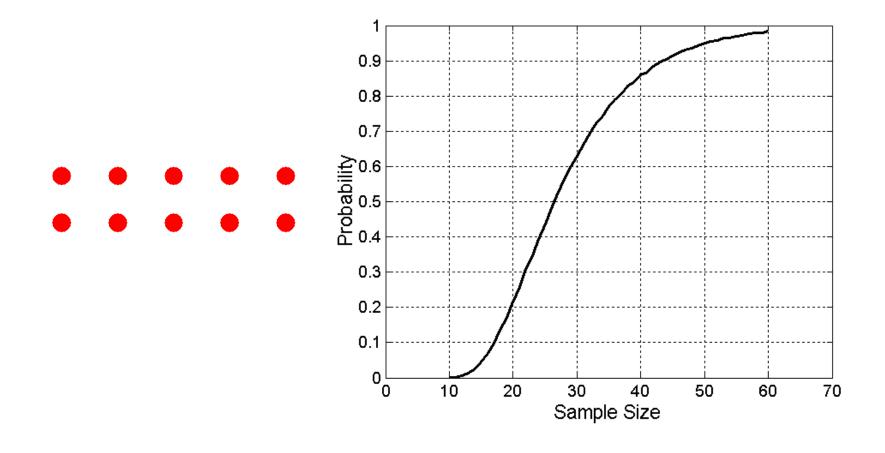
Sampling

- The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data set, provided the sample is <u>representative</u>.
 - A sample is representative if it has approximately the same distribution of properties (of interest) as the original set of data

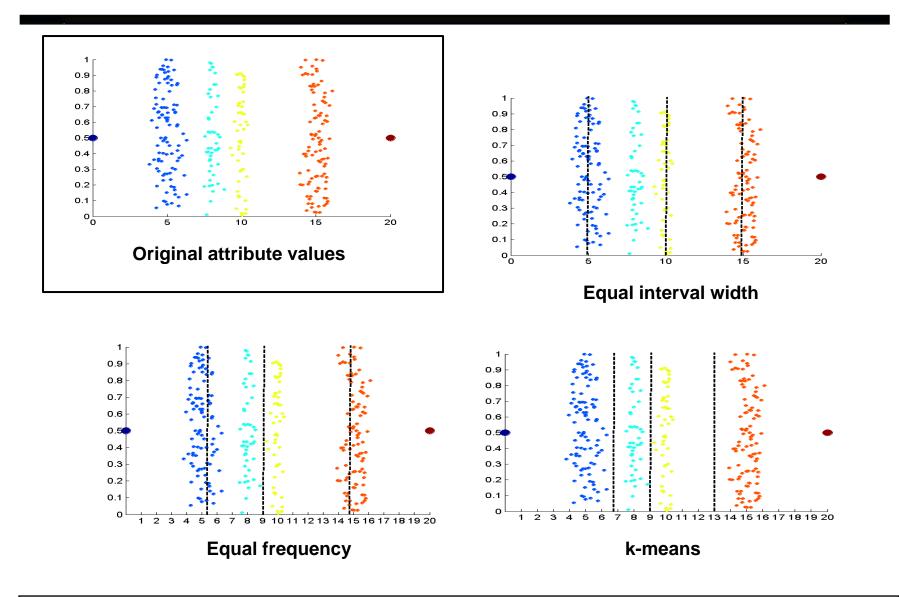
Types of sampling

- Simple random sampling
 - There is an equal probability of selecting any particular item.
- Sampling without replacement
 - As each item is selected, it is removed from the population.
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - Same object can be selected more than once.
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition.
 - Example: During polling, you might want equal numbers of male and female respondents. You create separate pools of men and women, and sample separately from each.

Sample size


8000 points

2000 Points


500 Points

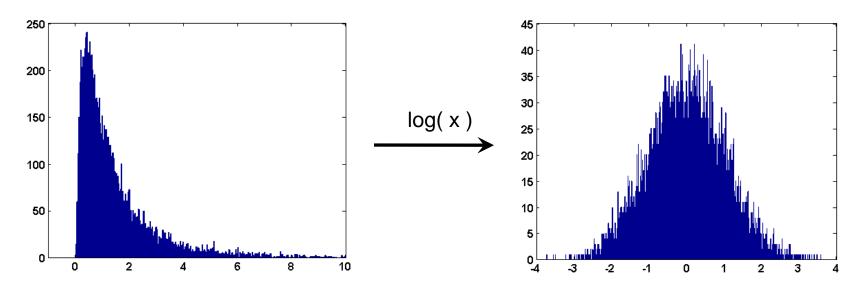
Sample size

 What sample size is necessary to get at least one object from each of 10 equal-sized groups?

Approaches to discretization

Definition:

A function that maps the entire set of values of a given attribute to a new set of replacement values, such that each old value can be identified with one of the new values.


Attribute transformation

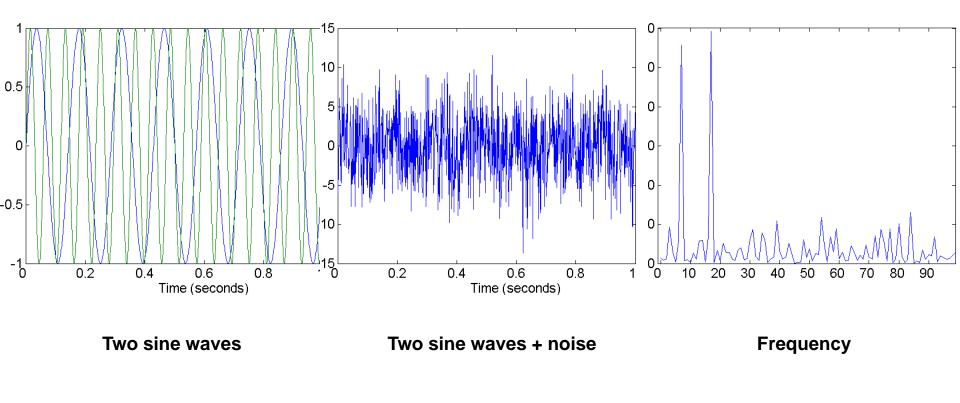
Simple functions

Examples of transform functions:

 x^k log(x) e^x |x|

- Often used to make the data more like some standard distribution, to better satisfy assumptions of a particular algorithm.
 - Example: discriminant analysis explicitly models each class distribution as a multivariate Gaussian

Attribute transformation


Standardization or normalization

- Usually involves making attribute:
 - mean= 0standard deviation= 1
 - in MATLAB, use zscore() function
- Important when working in Euclidean space and attributes have very different numeric scales.
- Also necessary to satisfy assumptions of certain algorithms.
 - Example: principal component analysis (PCA) requires each attribute to be mean-centered (i.e. have mean subtracted from each value)

Transform data to a new space

• Fourier transform

Eliminates noise present in time domain

Summary statistics and visualization

Let's use a tool that's good at those things ...

PowerPoint isn't it

Iris dataset

- Many exploratory data techniques are nicely illustrated with the iris dataset.
 - Dataset created by famous statistician Ronald Fisher
 - 150 samples of three species in genus Iris (50 each)
 - Iris setosa
 - Iris versicolor
 - Iris virginica
 - Four attributes
 - sepal width
 - sepal length
 - petal width
 - petal length
 - Species is class label

Iris virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.

42