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Logistic regression

e Name is somewhat misleading. Really a
technique for classification, not regression.

— “Regression” comes from fact that we fit a
linear model to the feature space.

e Involves a more probabilistic view of
classification.
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Different ways of expressing probability

e Consider a two-outcome probability space, where:
-p(O;)=p

-p(0;)=1-p=q
e Can express probability of O, as:

notation range equivalents

standard probability o 0 0.5 1
odds p/q 0 1 + o0
log odds (logit) | log(p/q) - o0 0 + oo
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Log odds

e Numeric treatment of outcomes O, and O, is
equivalent

— If neither outcome is favored over the other,
then log odds = 0.

— |f one outcome is favored with log odds = x,
then other outcome is disfavored with log
odds = -x.

e Especially useful in domains where relative
probabilities can be miniscule

— Example: multiple sequence alignment in
computational biology
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From probability to log odds (and back again)

z= log(Lj logit function
I=p
P _
I=p
e 1

p logistic function

1+e* 1+e°
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Standard logistic function
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Logistic regression

e Scenario:

— A multidimensional feature space (features
can be categorical or continuous).

— Outcome is discrete, not continuous.
+ We'll focus on case of two classes.

— It seems plausible that a linear decision

boundary (hyperplane) will give good
predictive accuracy.
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Using a logistic regression model

e Model consists of a vector B in d-dimensional feature
space

e For a point x in feature space, project it onto B to convert
it into a real number z in the range - « t0 +

z=a+p-x=a+Bx+--+p0,x,

e Map zto the range 0 to 1 using the logistic function
p=1/1+¢")

e Overall, logistic regression maps a point X in @-
dimensional feature space to a value in the range 0 to 1
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Using a logistic regression model

e Can interpret prediction from a logistic regression
model as:

— A probability of class membership

— A class assignment, by applying threshold to
probability

+ threshold represents decision boundary in feature
space
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Training a logistic regression model

e Need to optimize B so the model gives the best
possible reproduction of training set labels

— Usually done by numerical approximation of
maximum likelihood

— On really large datasets, may use stochastic
gradient descent
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Logistic regression in one dimension

| L]
a) Example: APACHE II Score and Mortality in Sepsis
The following figure shows 30 day mortality in a sample of septic
patients as a function of their baseline APACHE II Score.
Patients are coded as 1 or 0 depending on whether they are dead
or alive in 30 days, respectively.
Died 1 #8 S8 905 SPGB REEN
30 Day Mortality in Patients with Sepsis
Surulved D &® S SBBOBRBBEED [ N - [ ] [ ]
~——TTrfroeerrrrreeer gy e e ereerrrrerrr e e e rereyTTTTT
0 5 10 15 20 25 30 35 40 45
AFACHE Il Score at Baseline
Jeff Howbert Introduction to Machine Learning Winter 2014 11




Logistic regression in one dimension

We wish to predict death from baseline APACHE II score in these
patients.

Let n(x) be the probability that a patient with score x will die.

Note that linear regression would not work well here since it could
produce probabilities less than zero or greater than one.
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Survived 0  SOSOOORRN (T X
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APACHE |l Score at Baseline
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Logistic regression in one dimension

e Parameters control shape and location of sigmoid curve

— o controls location of midpoint

B controls slope of rise

m(x) = exp(a+Px)/ (1+exp(o+ Px))

0 5 10 15 20 25 30 35 40

When x = —a/ B, a+Px=0 and hence n(x) = lll.-“;(l +1)=05
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Logistic regression in one dimension

Data that has a sharp survival cut off point between patients who live
or die should have a large value of {.
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Data with a lengthy transition from survival to death should have a low

value of p.
Died 1 eeee OO0 ©9 900 S0EGREe Bee
Sur'.“\l.red [:] . L J L & X ] L R N ] L N L X L L | X
lﬁl‘lﬁlﬁlﬂﬁl—l—l—l—l—w—l—l—ﬁm
5 10 15 20 25 30 35 40
x

Jeff Howbert Introduction to Machine Learning Winter 2014




Logistic regression in one dimension
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Figure 10-3. The solid curved line is called a logistic regression curve. The
vertical axis measures the probability that an Old Testament passage is narra-
tive, based on the use of preterite verbs. The probability is zero for poetry and
unity or one for narrative. Passages with high preterite verb counts, falling to
the right of the vertical dotted line, are likely narrative. The triangle on the up-
per right represents Genesis 1:1-2:3, which is clearly literal, narrative history.
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Logistic regression

Subset of Fisher iris dataset
— Two classes
— First two columns (SL, SW)

in two dimensions

decision boundary

Classification with Figher Training Data
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Logistic regression in two dimensions

Interpreting the model vector of coefficients

e From MATLAB: B = [ 13.0460 ~1.9024 ~0.4047 ]

e a0=B(1),p=[BB]=B(2:3) o
e a, B define location and orientation #foo T EE T

of decision boundary 8|
— - o is distance of decision Ny
boundary from origin N
— decision boundary is :
perpendicular to Baal L A0A oa

e magnitude of B defines gradient  2*
of probabilities between 0 and 1 **

4.5 : ] B.5
Sepal Length
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Logistic regression in two dimensions
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Heart disease dataset
e 13 attributes (see heart.docx for details)
— 2 demographic (age, gender)

— 11 clinical measures of cardiovascular status and
performance

e 2 classes: absence (1) or presence ( 2) of heart disease

e 270 samples

e Dataset taken from UC Irvine Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)

e Preformatted for MATLAB as neart .mat.

Jeff Howbert Introduction to Machine Learning Winter 2014 19




MATLAB interlude

matlab _demo 05.m
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Logistic regression

e Advantages:

Makes no assumptions about distributions of classes in feature
space

Easily extended to multiple classes (multinomial regression)
Natural probabilistic view of class predictions

Quick to train

Very fast at classifying unknown records

Good accuracy for many simple data sets

Resistant to overfitting

Can interpret model coefficients as indicators of feature
importance

e Disadvantages:

Linear decision boundary
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