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Machine Learning

Logistic Regression
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� Name is somewhat misleading.  Really a 
technique for classification, not regression.

– “Regression” comes from fact that we fit a 
linear model to the feature space.

� Involves a more probabilistic view of 
classification.

Logistic regression
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� Consider a two-outcome probability space, where:

– p( O1 ) = p

– p( O2 ) = 1 – p = q

� Can express probability of O1 as:

Different ways of expressing probability

notation range equivalents

standard probability p 0 0.5 1

odds p / q 0 1 + ∞

log odds (logit) log( p / q ) - ∞ 0 + ∞
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� Numeric treatment of outcomes O1 and O2 is 
equivalent

– If neither outcome is favored over the other, 
then log odds = 0.

– If one outcome is favored with log odds = x, 
then other outcome is disfavored with log 
odds = -x.

� Especially useful in domains where relative 
probabilities can be miniscule

– Example: multiple sequence alignment in 
computational biology

Log odds
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From probability to log odds (and back again)

function logistic       
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Standard logistic function
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� Scenario:

– A multidimensional feature space (features 
can be categorical or continuous).

– Outcome is discrete, not continuous.

� We’ll focus on case of two classes.

– It seems plausible that a linear decision 
boundary (hyperplane) will give good 
predictive accuracy.

Logistic regression
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� Model consists of a vector ββββ in d-dimensional feature 

space

� For a point x in feature space, project it onto ββββ to convert 

it into a real number z in the range - ∞ to + ∞

� Map z to the range 0 to 1 using the logistic function

� Overall, logistic regression maps a point x in d-

dimensional feature space to a value in the range 0 to 1

Using a logistic regression model
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� Can interpret prediction from a logistic regression 
model as:

– A probability of class membership

– A class assignment, by applying threshold to 
probability

� threshold represents decision boundary in feature 

space

Using a logistic regression model
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� Need to optimize ββββ so the model gives the best 
possible reproduction of training set labels

– Usually done by numerical approximation of 
maximum likelihood

– On really large datasets, may use stochastic 
gradient descent

Training a logistic regression model
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Logistic regression in one dimension
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Logistic regression in one dimension
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Logistic regression in one dimension

� Parameters control shape and location of sigmoid curve

– α controls location of midpoint

– β controls slope of rise



Jeff Howbert    Introduction to Machine Learning       Winter 2014               14

Logistic regression in one dimension
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Logistic regression in one dimension
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Subset of Fisher iris dataset

– Two classes

– First two columns (SL, SW)

Logistic regression in two dimensions

decision boundary
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Interpreting the model vector of coefficients

� From MATLAB:  B = [ 13.0460   -1.9024   -0.4047 ]

� α = B( 1 ), ββββ = [ β1 β2 ] = B( 2 : 3 )

� α, ββββ define location and orientation

of decision boundary

– - α is distance of decision
boundary from origin

– decision boundary is

perpendicular to ββββ

� magnitude of ββββ defines gradient

of probabilities between 0 and 1 

Logistic regression in two dimensions

ββββ
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Logistic regression in two dimensions
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� 13 attributes (see heart.docx for details)

– 2 demographic (age, gender)

– 11 clinical measures of cardiovascular status and 

performance

� 2 classes: absence ( 1 ) or presence ( 2 ) of heart disease

� 270 samples

� Dataset taken from UC Irvine Machine Learning Repository:

http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)

� Preformatted for MATLAB as heart.mat.

Heart disease dataset
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matlab_demo_05.m

MATLAB interlude
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� Advantages:

– Makes no assumptions about distributions of classes in feature 

space

– Easily extended to multiple classes (multinomial regression)

– Natural probabilistic view of class predictions

– Quick to train

– Very fast at classifying unknown records

– Good accuracy for many simple data sets

– Resistant to overfitting

– Can interpret model coefficients as indicators of feature 

importance

� Disadvantages:

– Linear decision boundary

Logistic regression


