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Machine Learning

Math Essentials
Part 2
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Most commonly used continuous probability 
distribution

Also known as the normal distribution

Two parameters define a Gaussian:
– Mean μ location of center
– Variance σ2 width of curve

Gaussian distribution
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Gaussian distribution

In one dimension
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Gaussian distribution

In one dimension

Normalizing constant: 
insures that distribution 

integrates to 1

Controls width of curve

Causes pdf to decrease as 
distance from center 

increases
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Gaussian distribution

μ = 0   σ2 = 1 μ = 2   σ2 = 1

μ = 0   σ2 = 5 μ = -2   σ2 = 0.3
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Multivariate Gaussian distribution

In d dimensions

x and μ now d-dimensional vectors
– μ gives center of distribution in d-dimensional space

σ2 replaced by Σ, the d x d covariance matrix
– Σ contains pairwise covariances of every pair of features
– Diagonal elements of Σ are variances σ2 of individual 

features
– Σ describes distribution’s shape and spread  
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Covariance
– Measures tendency for two variables to deviate from 

their means in same (or opposite) directions at same 
time

Multivariate Gaussian distribution
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In two dimensions

Multivariate Gaussian distribution
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In two dimensions

Multivariate Gaussian distribution
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In three dimensions

Multivariate Gaussian distribution

rng( 1 );
mu =    [ 2; 1; 1 ];
sigma = [ 0.25 0.30 0.10;

0.30 1.00 0.70;
0.10 0.70 2.00] ;

x = randn( 1000, 3 );
x = x * sigma;
x = x + repmat( mu', 1000, 1 );
scatter3( x( :, 1 ), x( :, 2 ), x( :, 3 ), '.' );
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Orthogonal projection of y onto x
– Can take place in any space of dimensionality > 2
– Unit vector in direction of x is

x / || x ||
– Length of projection of y in

direction of x is
|| y || ⋅ cos(θ )

– Orthogonal projection of
y onto x is the vector

projx( y )   =   x ⋅ || y || ⋅ cos(θ ) / || x ||   =
[ ( x ⋅ y ) / || x ||2 ] x (using dot product alternate form)

Vector projection

y

x
θ

projx( y )
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There are many types of linear models in machine learning.
– Common in both classification and regression.
– A linear model consists of a vector w in d-dimensional 

feature space.
– The vector w attempts to capture the strongest gradient 

(rate of change) in the output variable, as seen across all 
training samples.

– Different linear models optimize w in different ways.
– A point x in feature space is mapped from d dimensions 

to a scalar (1-dimensional) output z by projection onto w:

Linear models

dd xwxwwwz +++=⋅+= L1100 xw cf. Lecture 5b
w0 ≡ α
w ≡ β
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There are many types of linear models in machine learning.
– The projection output z is typically transformed to a final 

predicted output y by some function ƒ:

example: for logistic regression, ƒ is logistic function
example: for linear regression, ƒ( z ) = z

– Models are called linear because they are a linear 
function of the model vector components w1, …, wd.

– Key feature of all linear models: no matter what ƒ is, a 
constant value of z is transformed to a constant value of 
y, so decision boundaries remain linear even after 
transform.

Linear models

)()()( 1100 dd xwxwwfwfzfy +++=⋅+== Lxw
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Geometry of projections

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Geometry of projections

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Geometry of projections

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Geometry of projections

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)

margin
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From projection to prediction

positive margin  → class 1

negative margin  → class 0
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Interpreting the model vector of coefficients

From MATLAB:  B = [ 13.0460   -1.9024   -0.4047 ]
w0 = B( 1 ), w = [ w1 w2 ] = B( 2 : 3 )
w0, w define location and orientation
of decision boundary

– - w0 is distance of decision
boundary from origin

– decision boundary is
perpendicular to w

magnitude of w defines gradient
of probabilities between 0 and 1 

Logistic regression in two dimensions

w
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Logistic function in d dimensions

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Decision boundary for logistic regression

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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