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Gaussian distribution

e Most commonly used continuous probabillity
distribution

e Also known as the normal distribution
e Two parameters define a Gaussian:

— Mean v location of center
— Variance  ¢? width of curve

Jeff Howbert Introduction to Machine Learning Winter 2014




Gaussian distribution

In one dimension
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Gaussian distribution

In one dimension Causes pdf to decrease as
distance from center

Increases
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Controls width of curve

Normalizing constant:
Insures that distribution
integrates to 1
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Multivariate Gaussian distribution

In d dimensions

1 1 ' o)
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N(x|p,X) =

e X and u now d-dimensional vectors
— u gives center of distribution in d-dimensional space

e o2 replaced by X, the d x d covariance matrix
— X contains pairwise covariances of every pair of features

— Diagonal elements of ¥ are variances o2 of individual
features

— X describes distribution’s shape and spread
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Multivariate Gaussian distribution

e Covariance

— Measures tendency for two variables to deviate from
their means in same (or opposite) directions at same
time
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Multivariate Gaussian distribution
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Multivariate Gaussian distribution

In two dimensions
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Jeff Howbert Introduction to Machine Learning Winter 2014 9




Multivariate Gaussian distribution

In three dimensions

X =

X * sigma;
X + repmat( mu®, 1000, 1 );
scatter3( x(C :, 1), xC =, 2), xC =z, 3), ".");
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Vector projection

e Orthogonal projection of y onto x
— Can take place in any space of dimensionality > 2

— Unit vector in direction of X Is
x /[ x ||
— Length of projection of y In
direction of X Is
Iy [| - cos(&)

— Orthogonal projection of
y onto X Is the vector
proj,(y) = x-[lyll-cos(8) /][ x|l =
[(X-y)/]||x]|?]X (using dot product alternate form)

proj,(y )
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Linear models

e There are many types of linear models in machine learning.
— Common in both classification and regression.

— A linear model consists of a vector w In d-dimensional
feature space.

— The vector w attempts to capture the strongest gradient
(rate of change) in the output variable, as seen across all
training samples.

— Different linear models optimize w In different ways.

— A point x In feature space is mapped from d dimensions
to a scalar (1-dimensional) output z by projection onto w:

cf. Lecture 5b
z:wo+W-X=w0+w1x1+---+wdxd W, = o

w =
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Linear models

e There are many types of linear models in machine learning.

— The projection output z is typically transformed to a final
predicted output y by some function f:

y=[(2)=f(wy+w-x)=f(w, +wpx +--+w,x,)
+ example: for logistic regression, f is logistic function
¢ example: for linear regression, f(z) =z

— Models are called linear because they are a linear
function of the model vector components wy, ..., wy.

— Key feature of all linear models: no matter what f is, a
constant value of z is transformed to a constant value of
Y, SO decision boundaries remain linear even after

transform.
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Geometry of projections

e w/x = 0: a line passing through

the origin and orthogonal to w

e w!x+wy = 0 shifts the line along
w.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Geometry of projections
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Geometry of projections

e wix = 0: a line passing through

the origin and orthogonal to w

e Wl x+wy = 0 shifts the line along
W,

wn + 1.,=-,-'1r§{ =N
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Geometry of projections

A
Yiﬂ;:?
B M e w/x = 0: a line passing through
X0 the origin and orthogonal to w
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wy +wlx =0
margin
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e X' is the projection of x on w.
e Set up a new 1D coordinate system: x —( (wy +xTx)/||w||.
N il
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slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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From projection to prediction

0 | positive margin — class 1

negative margin — cla
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Logistic regression in two dimensions

Interpreting the model vector of coefficients

e From MATLAB: B = [ 13.0460 -1.9024 -0.4047 ]
e W,=B(1l),w=[w,w,]=B(2:3)
e W,, W define location and orientation * ...

1 & Fisherversicolar [

Classification with Fisher Training Data

of decision boundary 38| A Fisheririnica
C .. 36 L
— - W, Is distance of decision N
boundary from origin 1l w8
— decision boundary is 2. e A
perpendicular to w & 28

e magnitude of w defines gradient ¢t
of probabilities between 0 and 1 %}

15 g 55 B 6.5 7 75 g
Sepal Length
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Logistic function in ddimensions

e What if x € R? = [x1... .rrd]T?

e o(wp+wlx) is a scalar function of a scalar variable wg + w’x.

e the direction of w determines
orientation;

e wq determines the location;

e ||w|| determines the slope.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Decision boundary for logistic regression

ply=1]|x) = oc(wo+w'x)=1/2 @ wo+w' x=0

e With linear logistic model we get a linear decision boundary.

slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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