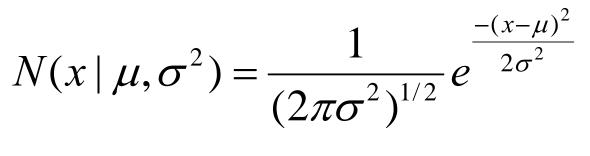
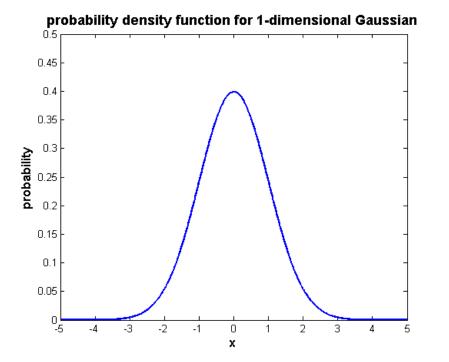
Machine Learning

Math Essentials Part 2

- Most commonly used continuous probability distribution
- Also known as the normal distribution
- Two parameters define a Gaussian:
 - Mean μ location of center
 - Variance σ^2 width of curve

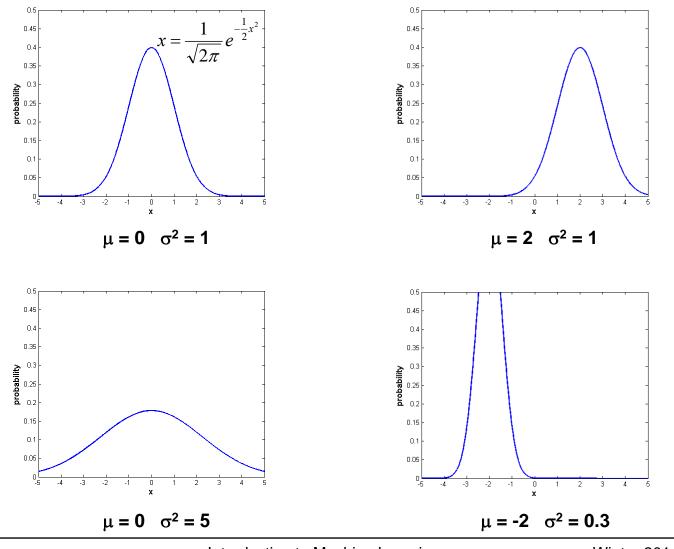
In one dimension





Jeff Howbert





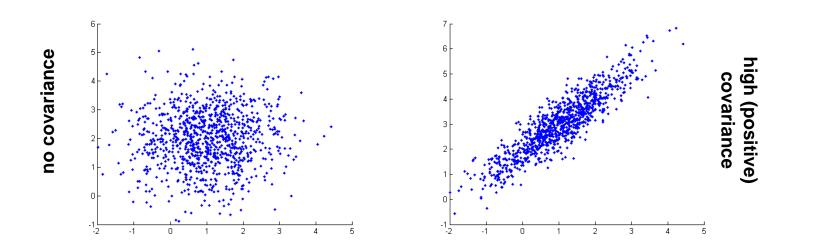
In d dimensions

$$N(\mathbf{x} | \mathbf{\mu}, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})}$$

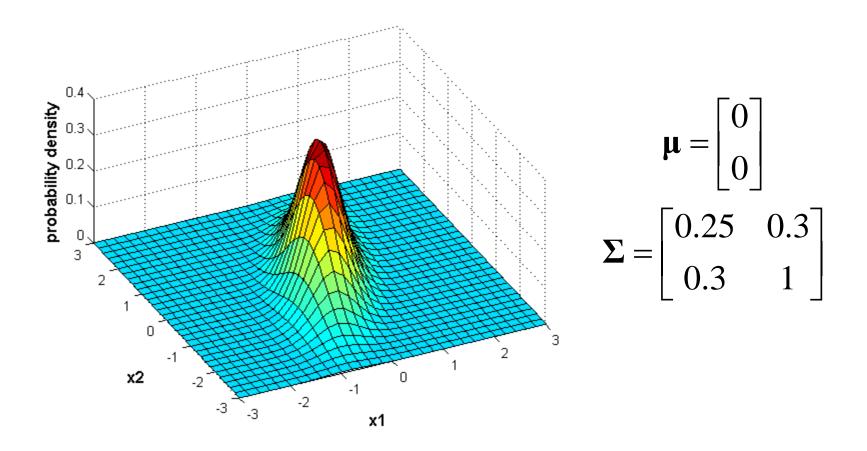
- **x** and μ now *d*-dimensional vectors
 - $-\mu$ gives center of distribution in *d*-dimensional space
- σ^2 replaced by Σ , the $d \ge d$ covariance matrix
 - Σ contains pairwise covariances of every pair of features
 - Diagonal elements of Σ are variances σ^2 of individual features
 - Σ describes distribution's shape and spread

Covariance

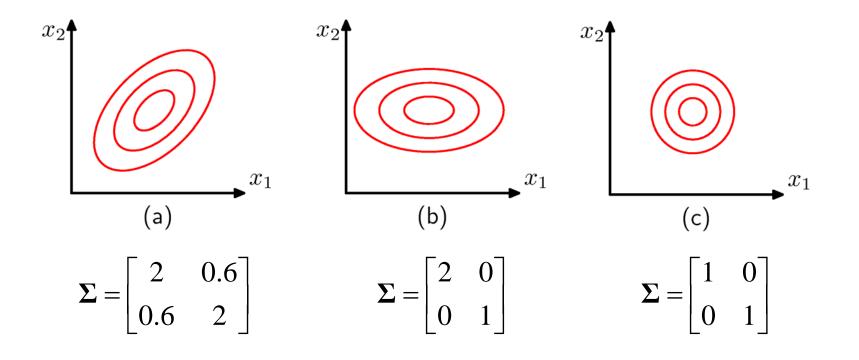
 Measures tendency for two variables to deviate from their means in same (or opposite) directions at same time

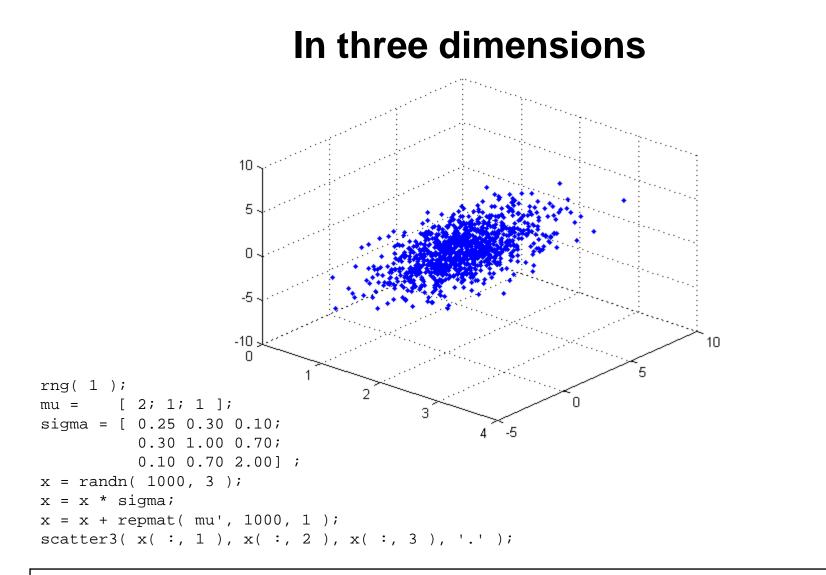


In two dimensions



In two dimensions

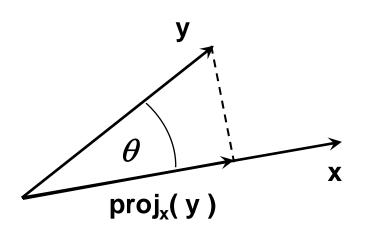




Jeff Howbert

Vector projection

- Orthogonal projection of y onto x
 - Can take place in any space of dimensionality ≥ 2
 - Unit vector in direction of x is
 x / || x ||
 - Length of projection of y in direction of x is
 || y || · cos(θ)
 - Orthogonal projection of
 y onto x is the vector



 $proj_{x}(y) = x \cdot ||y|| \cdot cos(\theta) / ||x|| = [(x \cdot y) / ||x||^{2}] x \text{ (using dot product alternate form)}$

Linear models

- There are many types of linear models in machine learning.
 - Common in both classification and regression.
 - A linear model consists of a vector w in d-dimensional feature space.
 - The vector w attempts to capture the strongest gradient (rate of change) in the output variable, as seen across all training samples.
 - Different linear models optimize **w** in different ways.
 - A point x in feature space is mapped from d dimensions to a scalar (1-dimensional) output z by projection onto w:

$$z = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + w_1 x_1 + \dots + w_d x_d$$

cf. Lecture 5b $W_0 \equiv \alpha$ $\mathbf{W} \equiv \beta$

Linear models

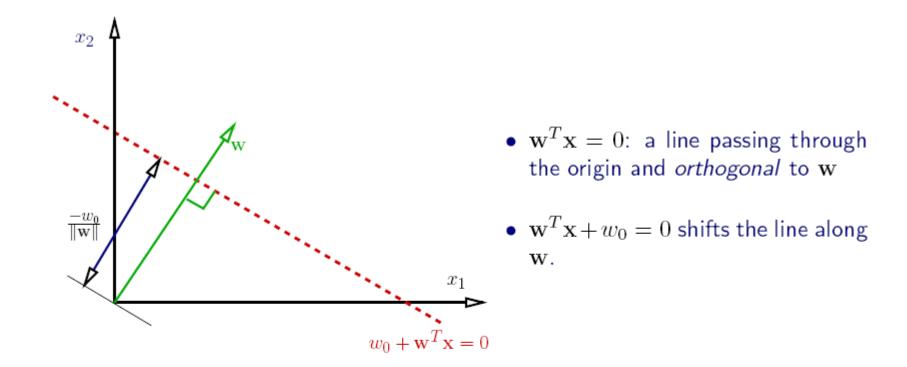
- There are many types of linear models in machine learning.
 - The projection output z is typically transformed to a final predicted output y by some function f:

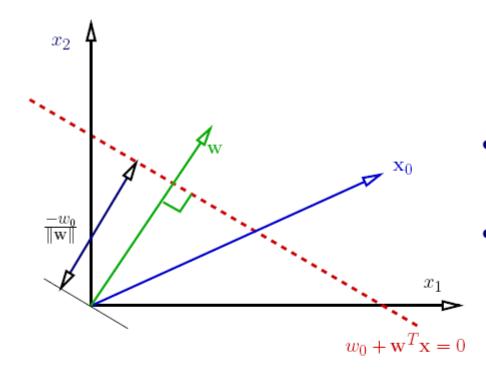
$$y = f(z) = f(w_0 + \mathbf{w} \cdot \mathbf{x}) = f(w_0 + w_1 x_1 + \dots + w_d x_d)$$

 \bullet example: for logistic regression, *f* is logistic function

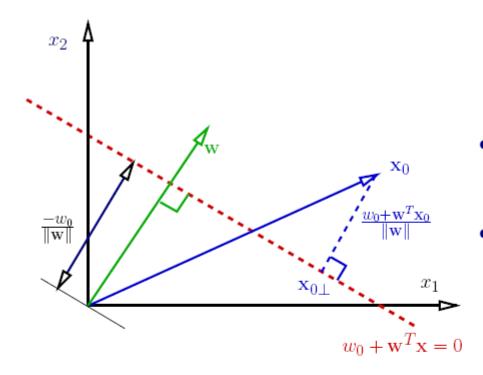
• example: for linear regression, f(z) = z

- Models are called linear because they are a linear function of the model vector components $w_1, ..., w_d$.
- Key feature of all linear models: no matter what *f* is, a constant value of *z* is transformed to a constant value of *y*, so decision boundaries remain linear even after transform.

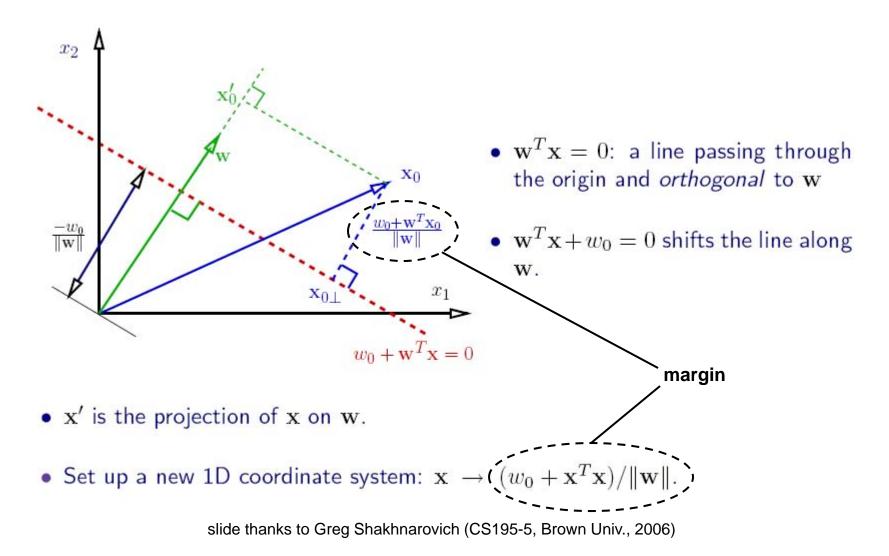




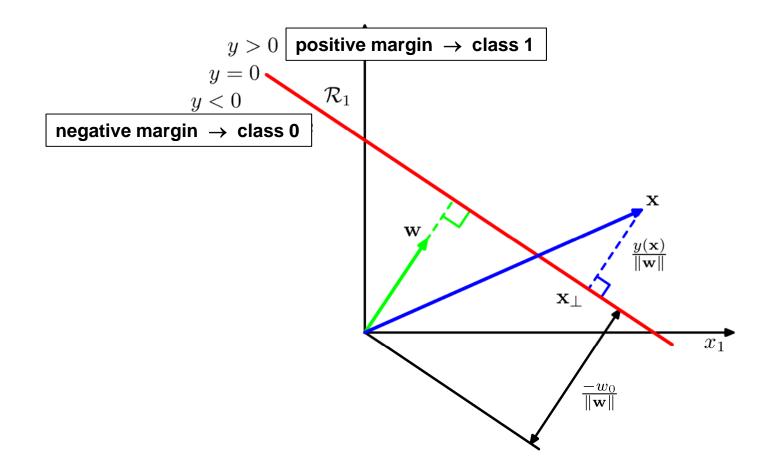
- $\mathbf{w}^T \mathbf{x} = 0$: a line passing through the origin and *orthogonal* to \mathbf{w}
- w^Tx + w₀ = 0 shifts the line along w.



- $\mathbf{w}^T \mathbf{x} = 0$: a line passing through the origin and *orthogonal* to \mathbf{w}
- w^Tx + w₀ = 0 shifts the line along w.



From projection to prediction



Introduction to Machine Learning

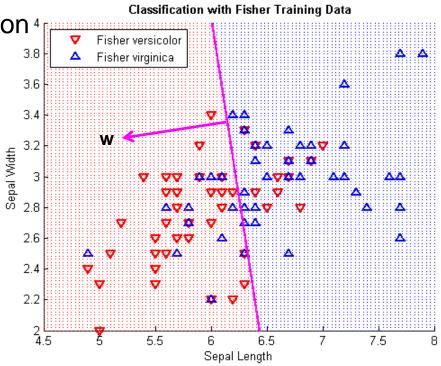
Logistic regression in two dimensions

Interpreting the model vector of coefficients

• From MATLAB: B = [13.0460 -1.9024 -0.4047]

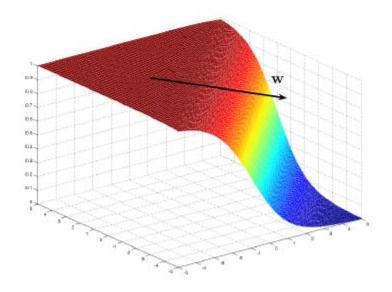
•
$$w_0 = B(1), \mathbf{w} = [w_1 \ w_2] = B(2:3)$$

- w₀, w define location and orientation ⁴ of decision boundary
 - w₀ is distance of decision boundary from origin
 - decision boundary is perpendicular to w
- magnitude of w defines gradient of probabilities between 0 and 1



Logistic function in *d* dimensions

- What if $\mathbf{x} \in \mathbb{R}^d = [x_1 \dots x_d]^T$?
- $\sigma(w_0 + \mathbf{w}^T \mathbf{x})$ is a scalar function of a scalar variable $w_0 + \mathbf{w}^T \mathbf{x}$.

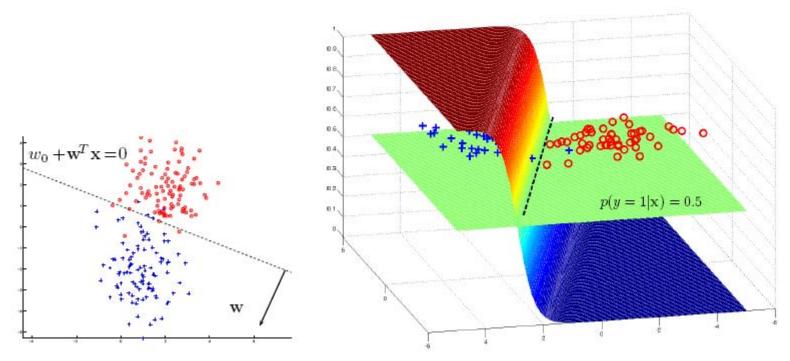


- the direction of w determines orientation;
- w₀ determines the location;
- $\|\mathbf{w}\|$ determines the slope.

Decision boundary for logistic regression

$$p(y = 1 | \mathbf{x}) = \sigma(w_0 + \mathbf{w}^T \mathbf{x}) = 1/2 \iff w_0 + \mathbf{w}^T \mathbf{x} = 0$$

• With linear logistic model we get a linear decision boundary.



Jeff Howbert	
--------------	--