Classification

Discriminant Analysis

slides thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
Distribution in 1D projection

- Consider a scalar projection

\[f : \mathbf{x} \rightarrow w_0 + \mathbf{w}^T \mathbf{x} \]

- We can study how well the projected values corresponding to different classes are separated
 - This is a function of \(\mathbf{w} \); some projections may be better than others.
Distribution in 1D projection

- Consider a scalar projection

\[f : x \rightarrow w_0 + w^T x \]

- We can study how well the projected values corresponding to different classes are separated
 - This is a function of \(w \); some projections may be better than others.
Linear discriminant and dimensionality reduction

The *discriminant function* \(f(x; w) = w_0 + w^T x \) reduces the dimension of examples from \(d \) to 1; the components orthogonal to \(w \) become irrelevant.

\[f(x, w) = 0 \]
\[f(x, w) = -1 \]
\[f(x, w) = +1 \]

\[\hat{y} = +1 \Leftrightarrow f(x; w) > 0 \]
Projections and classification

What objective are we optimizing the 1D projection for?
We want to minimize “overlap” between projections of the two classes.

One approach: make the class projections a) compact, b) far apart.

An obvious idea: maximize separation between the projected means.
Separation of the means

- N_{+1} examples of class $+1$, N_{-1} examples of class -1.

- The *empirical mean* of each class:

 $$m_{+1} = \frac{1}{N_{+1}} \sum_{y_i=+1} x_i, \quad m_{-1} = \frac{1}{N_{-1}} \sum_{y_i=-1} x_i$$

- We can look for projection \hat{w} such that

 $$\hat{w} = \arg\max_w w^T (m_{+1} - m_{-1})$$
Separation of the means: example

$$\hat{w} = \arg\max_{\|w\|=1} w^T (m_+ - m_-)$$

- Also want to make projection of each class “compact”...
Fisher’s linear discriminant analysis

- Criterion to be maximized:

\[J_{\text{Fisher}}(w) = \frac{\text{separation between projected means}^2}{\text{sum of projected within-class variances}} \]

- Numerator: *between-class scatter* \((w^T(m_{+1} - m_{-1}))^2 \)

- Denominator: *within-class scatter* \(w^T(N_{-1}S_{-1} + N_{+1}S_{+1})w \), where

\[S_c = \frac{1}{N_c} \sum_{y_i = c} (x_i - m_c)(x_i - m_c)^T. \]

- The denominator is the sum of estimated 1D class covariances, after data are projected to \(w \), weighted by number of samples in each class.
Fisher’s LDA

\[J_{Fisher}(w) = \frac{(w^T(m_{+1} - m_{-1}))^2}{w^T(N_{-1}S_{-1} + N_{+1}S_{+1})w} \]

- Best 1D projection: \(\hat{w} = \arg\max_w J_{Fisher}(w) \)

- Setting the derivative of \(J \) w.r.t. \(w \) to zero, get solution:

\[\hat{w} \propto (N_{-1}S_{-1} + N_{+1}S_{+1})^{-1}(m_{+1} - m_{-1}) \]

Notation: \(\propto \) means “proportional to”, up to a constant factor.
Example of applying Fisher’s LDA

maximize separation of means

maximize Fisher’s LDA criterion
→ better class separation
Using LDA for classification in one dimension

- Fisher’s LDA gives an optimal choice of w, the vector for projection down to one dimension.
- For classification, we still need to select a threshold to compare projected values to. Two possibilities:
 - No explicit probabilistic assumptions. Find threshold which minimizes empirical classification error.
 - Make assumptions about data distributions of the classes, and derive theoretically optimal decision boundary.
 - Usual choice for class distributions is multivariate Gaussian.
 - We also will need a bit of decision theory.
To minimize classification error:

\[\hat{y} = \arg \max_{C} p(C \mid \mathbf{x}) \approx \]

At a given point \(\mathbf{x} \) in feature space, choose as the predicted class the class that has the greatest probability at \(\mathbf{x} \).
Decision theory

\[\hat{y} = \arg \max_C p(C \mid x) \approx \]

At a given point \(x \) in feature space, choose as the predicted class the class that has the greatest probability at \(x \).
MATLAB interlude

Classification via discriminant analysis, using the classify() function.
Data for each class modeled as multivariate Gaussian.

matlab_demo_06.m

class = classify(sample, training, group, 'type')

predicted test labels test data training data training labels model for class covariances
MATLAB classify() function

Models for class covariances

- **'linear'**: all classes have same covariance matrix → linear decision boundary
- **'diaglinear'**: all classes have same diagonal covariance matrix → linear decision boundary
- **'quadratic'**: classes have different covariance matrices → quadratic decision boundary
- **'diagquadratic'**: classes have different diagonal covariance matrices → quadratic decision boundary
MATLAB classify() function

Example with ‘quadratic’ model of class covariances
Relative class probabilities for LDA

'linear':
all classes have same covariance matrix
→ linear decision boundary

relative class probabilities have exactly same sigmoidal form as in logistic regression