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Classification

Nearest Neighbor
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Instance based classifiers

Atr1 ……... AtrN Class
A

B

B

C

A

C

B

Set of Stored Cases

Atr1 ……... AtrN

Unseen Case

• Store the training samples 

• Use training samples to 
predict the class label of 
test samples
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Examples:
– Rote learner

memorize entire training data
perform classification only if attributes of test 

sample match one of the training samples exactly

– Nearest neighbor
use k “closest” samples (nearest neighbors) to 

perform classification

Instance based classifiers
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Basic idea:
– If it walks like a duck, quacks like a duck, then 

it’s probably a duck

Nearest neighbor classifiers

training 
samples

test 
sample

compute 
distance

choose k of the 
“nearest” samples
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Nearest neighbor classifiers

Requires three inputs:
1. The set of stored 

samples
2. Distance metric to 

compute distance 
between samples

3. The value of k, the 
number of nearest 
neighbors to retrieve

test sample
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Nearest neighbor classifiers

To classify test sample:
1. Compute distances to 

samples in training set
2. Identify k nearest 

neighbors 
3. Use class labels of 

nearest neighbors to 
determine class label of 
test sample (e.g. by 
taking majority vote)

test sample
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Definition of nearest neighbors

k-nearest neighbors of test sample x are training 
samples that have the k smallest distances to x

1-nearest neighbor 2-nearest neighbor 3-nearest neighbor
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Options for computing distance between two 
samples:
– Euclidean distance 

– Cosine similarity

– Hamming distance
– String edit distance
– Kernel distance
– Many others

Distances for nearest neighbors
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Scaling issues
– Attributes may have to be scaled to prevent 

distance measures from being dominated by 
one of the attributes

– Example:
height of a person may vary from 1.5 m to 1.8 m
weight of a person may vary from 90 lb to 300 lb
income of a person may vary from $10K to $1M

Distances for nearest neighbors
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Euclidean measure: high dimensional data 
subject to curse of dimensionality

range of distances compressed

effects of noise more pronounced
one solution: normalize the vectors to unit length

Distances for nearest neighors

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
vs.

d = 3.46 d = 1.00
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Cosine similarity measure: high dimensional data 
subject often very sparse

example: word vectors for documents

nearest neighbor rarely of same class
one solution: use larger values for k

Distances for nearest neighbors

LA Times section Average cosine similarity
within section

Entertainment 0.032
Financial 0.030
Foreign 0.030
Metro 0.021
National 0.027
Sports 0.036

Average across all sections 0.014
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Options for predicting test class from nearest 
neighbor list
– Take majority vote of class labels among the 

k-nearest neighbors
– Weight the votes according to distance

example: weight factor  w = 1 / d2

Predicting class from nearest neighbors
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Predicting class from nearest neighbors

nearest neighbors 1 2 3

majority vote ̶ ? +

distance-
weighted vote

̶ ̶ ̶ or  +
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Choosing the value of k:
– If k is too small, sensitive to noise points
– If k is too large, neighborhood may include points from 

other classes

Predicting class from nearest neighbors
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1-nearest neighbor

Voronoi diagram
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k-Nearest neighbor classifier is a lazy learner. 
– Does not build model explicitly.
– Unlike eager learners such as decision tree 

induction and rule-based systems.
– Classifying unknown samples is relatively 

expensive.
k-Nearest neighbor classifier is a local model, vs. 
global models of linear classifiers.
k-Nearest neighbor classifier is a non-parametric 
model, vs. parametric models of linear classifiers. 

Nearest neighbor classification
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Decision boundaries in global vs. local models

logistic regression

• global
• stable
• can be inaccurate

15-nearest neighbor 1-nearest neighbor

• local
• unstable
• accurate

What ultimately matters: GENERALIZATION

stable: model decision boundary not sensitive to 
addition or removal of samples from training set
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PEBLS: Parallel Examplar-Based Learning 
System (Cost & Salzberg)
– Works with both continuous and nominal 

features
For nominal features, distance between two 

nominal values is computed using modified value 
difference metric (MVDM)

– Each sample is assigned a weight factor
– Number of nearest neighbor, k = 1

Example: PEBLS
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Example: PEBLS

Class
Refund

Yes No

Yes 0 3

No 3 4

Class
Marital Status

Single Married Divorced

Yes 2 0 1

No 2 4 1
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Distance between nominal attribute values:

d(Single,Married) 
=  | 2/4 – 0/4 | + | 2/4 – 4/4 | =  1
d(Single,Divorced) 
=  | 2/4 – 1/2 | + | 2/4 – 1/2 | =  0
d(Married,Divorced) 
=  | 0/4 – 1/2 | + | 4/4 – 1/2 | =  1
d(Refund=Yes,Refund=No)
= | 0/3 – 3/7 | + | 3/3 – 4/7 | = 6/7

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10
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Tid Refund Marital 
Status 

Taxable 
Income Cheat 

X Yes Single 125K No 

Y No Married 100K No 
10 

 

Example: PEBLS

∑
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Distance between record X and record Y: 

where:
correctly predicts X  timesofNumber 
predictionfor  used is X  timesofNumber 

=Xw

wX ≅ 1 if X makes accurate prediction most of the time

wX > 1 if X is not reliable for making predictions
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Steps used for nearest neighbor classification are 
easily adapted to make predictions on continuous 
outcomes.

Nearest neighbor regression
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