Classification

Nearest Neighbor

I nstance based classifiers

Set of Stored Cases

Atr1	$\ldots \ldots \ldots$	AtrN	Class
			A
			B
			B
			C
			A
			C
			B

- Store the training samples
- Use training samples to predict the class label of test samples

Unseen Case

Atr1	$\ldots \ldots \ldots$	$A \operatorname{trN}$

I nstance based classifiers

- Examples:
- Rote learner
- memorize entire training data
- perform classification only if attributes of test sample match one of the training samples exactly
- Nearest neighbor
- use k "closest" samples (nearest neighbors) to perform classification

Nearest neighbor classifiers

- Basic idea:
- If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest neighbor classifiers

Requires three inputs:

1. The set of stored samples
2. Distance metric to compute distance between samples
3. The value of k, the number of nearest neighbors to retrieve

Nearest neighbor classifiers

To classify test sample:

1. Compute distances to samples in training set
2. Identify k nearest neighbors
3. Use class labels of nearest neighbors to determine class label of test sample (e.g. by taking majority vote)

Definition of nearest neighbors

k-nearest neighbors of test sample \times are training samples that have the k smallest distances to x

1-nearest neighbor

2-nearest neighbor

3-nearest neighbor

Distances for nearest neighbors

- Options for computing distance between two samples:
- Euclidean distance
$d(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}$
- Cosine similarity

$$
d(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}
$$

- Hamming distance
- String edit distance
- Kernel distance
- Many others

Distances for nearest neighbors

- Scaling issues
- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
- height of a person may vary from 1.5 m to 1.8 m
- weight of a person may vary from 90 lb to 300 lb
- income of a person may vary from $\$ 10 \mathrm{~K}$ to $\$ 1 \mathrm{M}$

Distances for nearest neighors

- Euclidean measure: high dimensional data subject to curse of dimensionality
- range of distances compressed

010101010101

$$
d=3.46
$$

00000000000
VS.
00000000001
$\mathrm{d}=1.00$

- effects of noise more pronounced
- one solution: normalize the vectors to unit length

Distances for nearest neighbors

- Cosine similarity measure: high dimensional data subject often very sparse
- example: word vectors for documents

LA Times section	Average cosine similarity within section
Entertainment	0.032
Financial	0.030
Foreign	0.030
Metro	0.021
National	0.027
Sports	0.036
Average across all sections	0.014

- nearest neighbor rarely of same class
- one solution: use larger values for k

Predicting class from nearest neighbors

- Options for predicting test class from nearest neighbor list
- Take majority vote of class labels among the k-nearest neighbors
- Weight the votes according to distance
- example: weight factor $w=1 / d^{2}$

Predicting class from nearest neighbors

nearest neighbors	1	2	3
majority vote	-	$?$	+
distance- weighted vote	-	-	- or +

Predicting class from nearest neighbors

- Choosing the value of k :
- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

1-nearest neighbor

Voronoi diagram

Nearest neighbor classification

- k-Nearest neighbor classifier is a lazy learner.
- Does not build model explicitly.
- Unlike eager learners such as decision tree induction and rule-based systems.
- Classifying unknown samples is relatively expensive.
- k-Nearest neighbor classifier is a local model, vs. global models of linear classifiers.
- k-Nearest neighbor classifier is a non-parametric model, vs. parametric models of linear classifiers.

Decision boundaries in global vs. local models

logistic regression

- global
- stable
- can be inaccurate

15-nearest neighbor

1-nearest neighbor

- local
- unstable
- accurate
stable: model decision boundary not sensitive to addition or removal of samples from training set

What ultimately matters: GENERALIZATION

Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning System (Cost \& Salzberg)
- Works with both continuous and nominal features
*For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
- Each sample is assigned a weight factor
- Number of nearest neighbor, $k=1$

Example: PEBLS

| Tid | Refund | Marital
 Status | Taxable
 Income | Cheat |
| :--- | :--- | :--- | :--- | :--- |$|$| 1 | Yes | Single | 125 K |
| :--- | :--- | :--- | :--- |
| 2 | No | Married | 100 K |
| 3 | No | Single | 70 K |
| 4 | Yes | Married | 120 K |
| 5 | No | Divorced | No |
| 6 | No | Married | 60 K |
| 7 | Yes | Divorced | 220 K |
| 8 | No | Single | 85 K |
| 9 | No | Married | 75 K |
| 10 | No | Single | 90 K |

Distance between nominal attribute values:
d(Single,Married)
$=|2 / 4-0 / 4|+|2 / 4-4 / 4|=1$
d(Single,Divorced)
$=|2 / 4-1 / 2|+|2 / 4-1 / 2|=0$
d(Married,Divorced)
$=|0 / 4-1 / 2|+|4 / 4-1 / 2|=1$
d(Refund=Yes,Refund=No)
$=|0 / 3-3 / 7|+|3 / 3-4 / 7|=6 / 7$

Class	Marital Status		
	Single	Married	Divorced
Yes	2	0	1
No	2	4	1

Class	Refund	
	Yes	No
Yes	0	3
No	3	4

$$
d\left(V_{1}, V_{2}\right)=\sum_{i}\left|\frac{n_{1 i}}{n_{1}}-\frac{n_{2 i}}{n_{2}}\right|
$$

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
X	Yes	Single	125 K	No
Y	No	Married	100 K	No

Distance between record X and record Y :

$$
\Delta(X, Y)=w_{X} w_{Y} \sum_{i=1}^{d} d\left(X_{i}, Y_{i}\right)^{2}
$$

where:

$$
w_{X}=\frac{\text { Number of times } X \text { is used for prediction }}{\text { Number of times } X \text { predicts correctly }}
$$

$W_{X} \cong 1$ if X makes accurate prediction most of the time
$W_{X}>1$ if X is not reliable for making predictions

Nearest neighbor regression

- Steps used for nearest neighbor classification are easily adapted to make predictions on continuous outcomes.

