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Classification

Bayesian Classifiers
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A probabilistic framework for solving classification 
problems.
– Used where class assignment is not 

deterministic, i.e. a particular set of attribute 
values will sometimes be associated with one 
class, sometimes with another.

– Requires estimation of posterior probability for 
each class, given a set of attribute values:

for each class Ci

– Then use decision theory to make predictions 
for a new sample x

Bayesian classification
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Conditional probability:

Bayes theorem:

Bayesian classification
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Given: 
– A doctor knows that meningitis causes stiff neck 50% of the 

time
– Prior probability of any patient having meningitis is 1/50,000
– Prior probability of any patient having stiff neck is 1/20

If a patient has stiff neck, what’s the probability 
he/she has meningitis?

Example of Bayes theorem
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Treat each attribute and class label as random 
variables.

Given a sample x with attributes ( x1, x2, … , xn ):
– Goal is to predict class C.
– Specifically, we want to find the value of Ci that 

maximizes p( Ci | x1, x2, … , xn ).

Can we estimate p( Ci | x1, x2, … , xn ) directly from 
data?

Bayesian classifiers
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Approach:
Compute the posterior probability p( Ci | x1, x2, … , xn ) for 
each value of Ci using Bayes theorem:

Choose value of Ci that maximizes 
p( Ci | x1, x2, … , xn )

Equivalent to choosing value of Ci that maximizes
p( x1, x2, … , xn | Ci ) p( Ci )
(We can ignore denominator – why?)

Easy to estimate priors p( Ci ) from data.  (How?)
The real challenge: how to estimate p( x1, x2, … , xn | Ci )?

Bayesian classifiers
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How to estimate p( x1, x2, … , xn | Ci )?

In the general case, where the attributes xj have 
dependencies, this requires estimating the full joint 
distribution p( x1, x2, … , xn ) for each class Ci.

There is almost never enough data to confidently 
make such estimates.

Bayesian classifiers
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Assume independence among attributes xj when class is 
given:    
p( x1, x2, … , xn | Ci ) = p( x1 | Ci ) p( x2 | Ci ) … p( xn | Ci )

Usually straightforward and practical to estimate p( xj | Ci ) 
for all xj and Ci.

New sample is classified to Ci if
p( Ci ) Π p( xj | Ci )

is maximal.

Naïve Bayes classifier
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Class priors:
p( Ci ) = Ni / N

p( No ) = 7/10
p( Yes ) = 3/10

For discrete attributes:
p( xj | Ci ) = | xji | / Ni
where | xji | is number of 
instances in class Ci having 
attribute value xj

Examples:
p( Status = Married | No ) = 4/7
p( Refund = Yes | Yes ) = 0

How to estimate p ( xj | Ci ) from data?

Tid Refund Marital 
Status 

Taxable 
Income Evade

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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For continuous attributes: 
– Discretize the range into bins 

replace with an ordinal attribute
– Two-way split: ( xi < v ) or ( xi > v )

replace with a binary attribute
– Probability density estimation:

assume attribute follows some standard parametric 
probability distribution (usually a Gaussian)
use data to estimate parameters of distribution
(e.g. mean and variance)
once distribution is known, can use it to estimate 
the conditional probability p( xj | Ci )

How to estimate p ( xj | Ci ) from data?
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Gaussian distribution:

– one for each ( xj, Ci ) pair

For ( Income | Class = No ):
– sample mean = 110
– sample variance = 2975

How to estimate p ( xj | Ci ) from data?

Tid Refund Marital 
Status 

Taxable 
Income Evade

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Example of using naïve Bayes classifier

)120K Income Married,  Status No,Refund ( ====x
p( x | Class = No ) = p( Refund = No | Class = No)

× p( Married | Class = No )
× p( Income = 120K | Class = No )

= 4/7 × 4/7 × 0.0072 = 0.0024

p( x | Class = Yes ) = p( Refund = No | Class = Yes)
× p( Married | Class = Yes )
× p( Income = 120K | Class = Yes )

= 1 × 0 × 1.2 × 10-9 = 0

p( x | No ) p( No ) > p( x | Yes ) p( Yes )

therefore p( No | x ) > p( Yes | x )

=> Class = No

Given a Test Record:

p( Refund = Yes | No ) = 3/7
p( Refund = No | No ) = 4/7
p( Refund = Yes | Yes ) = 0/3
p( Refund = No | Yes ) = 3/3
p( Marital Status = Single | No ) = 2/7
p( Marital Status = Divorced | No ) = 1/7
p( Marital Status = Married | No ) = 4/7
p( Marital Status = Single | Yes ) = 2/3
p( Marital Status = Divorced | Yes ) = 1/3
p( Marital Status = Married | Yes ) = 0/3

For Taxable Income:
If Class = No:   sample mean = 110

sample variance = 2975
If Class = Yes:  sample mean = 90

sample variance = 25
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Problem: if one of the conditional probabilities is 
zero, then the entire expression becomes zero.
This is a significant practical problem, especially 
when training samples are limited.
Ways to improve probability estimation:

Naïve Bayes classifier
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Example of Naïve Bayes classifier

Name Give Birth Can Fly Live in Water Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark yes no yes no non-mammals
turtle no no sometimes yes non-mammals
penguin no no sometimes yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander no no sometimes yes non-mammals
gila monster no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class
yes no yes no ?
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X: attributes

M: class = mammal

N: class = non-mammal

p( X | M ) p( M ) > p( X | N ) p( N )

=> mammal
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Robust to isolated noise samples.
Handles missing values by ignoring the sample 
during probability estimate calculations.
Robust to irrelevant attributes.
NOT robust to redundant attributes.
– Independence assumption does not hold in 

this case.
– Use other techniques such as Bayesian Belief 

Networks (BBN).

Summary of naïve Bayes
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