Classification

Bayesian Classifiers

1

Bayesian classification

- A probabilistic framework for solving classification problems.
 - Used where class assignment is not deterministic, i.e. a particular set of attribute values will sometimes be associated with one class, sometimes with another.
 - Requires estimation of posterior probability for each class, given a set of attribute values:

 $p(C_i | x_1, x_2, \dots, x_n)$ for each class C_i

 Then use decision theory to make predictions for a new sample x

Bayesian classification

Conditional probability:

$$p(C \mid \mathbf{x}) = \frac{p(\mathbf{x}, C)}{p(\mathbf{x})} \qquad p(\mathbf{x} \mid C) = \frac{p(\mathbf{x}, C)}{p(C)}$$

Bayes theorem:
$$p(C \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C) p(C)}{p(\mathbf{x})}$$

posterior
probability
evidence

Example of Bayes theorem

• Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior probability of any patient having meningitis is 1/50,000
- Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$p(M \mid S) = \frac{p(S \mid M) p(M)}{p(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian classifiers

- Treat each attribute and class label as random variables.
- Given a sample **x** with attributes (x₁, x₂, ..., x_n):
 Goal is to predict class C.
 - Specifically, we want to find the value of C_i that maximizes $p(C_i | x_1, x_2, ..., x_n)$.
- Can we estimate $p(C_i | x_1, x_2, ..., x_n)$ directly from data?

Bayesian classifiers

Approach:

 Compute the posterior probability p(C_i | x₁, x₂, ..., x_n) for each value of C_i using Bayes theorem:

$$p(C_i | x_1, x_2, \dots, x_n) = \frac{p(x_1, x_2, \dots, x_n | C_i) p(C_i)}{p(x_1, x_2, \dots, x_n)}$$

- Choose value of C_i that maximizes $p(C_i | x_1, x_2, ..., x_n)$
- Equivalent to choosing value of C_i that maximizes
 p(x₁, x₂, ..., x_n | C_i) p(C_i)

(We can ignore denominator – why?)

- Easy to estimate priors $p(C_i)$ from data. (How?)
- The real challenge: how to estimate $p(x_1, x_2, \dots, x_n | C_i)$?

6

- How to estimate $p(x_1, x_2, ..., x_n | C_i)$?
- In the general case, where the attributes x_j have dependencies, this requires estimating the full joint distribution $p(x_1, x_2, ..., x_n)$ for each class C_j .
- There is almost never enough data to confidently make such estimates.

Naïve Bayes classifier

Assume independence among attributes x_j when class is given:

 $p(x_1, x_2, ..., x_n | C_i) = p(x_1 | C_i) p(x_2 | C_i) ... p(x_n | C_i)$

- Usually straightforward and practical to estimate $p(x_j | C_i)$ for all x_j and C_j .
- New sample is classified to C_i if $p(C_i) \prod p(x_j | C_i)$ is maximal.

How to estimate $p(x_j | C_i)$ from data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Class priors: $p(C_i) = N_i / N$ p(No) = 7/10p(Yes) = 3/10
- For discrete attributes: $p(x_j | C_i) = |x_{ji}| / N_i$ where $|x_{ji}|$ is number of instances in class C_i having attribute value x_j

Examples:

p(Status = Married | No) = 4/7 p(Refund = Yes | Yes) = 0

9

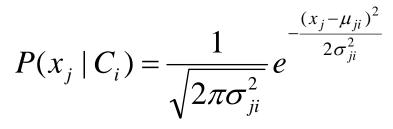
How to estimate $p(x_j | C_i)$ from data?

- For continuous attributes:
 - Discretize the range into bins
 - replace with an ordinal attribute
 - Two-way split: $(x_i < v)$ or $(x_i > v)$
 - replace with a binary attribute
 - Probability density estimation:
 - assume attribute follows some standard parametric probability distribution (usually a Gaussian)
 - use data to estimate parameters of distribution (e.g. mean and variance)
 - once distribution is known, can use it to estimate the conditional probability $p(x_i | C_i)$

How to estimate $p(x_j | C_i)$ from data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Gaussian distribution:



- one for each (x_j , C_i) pair

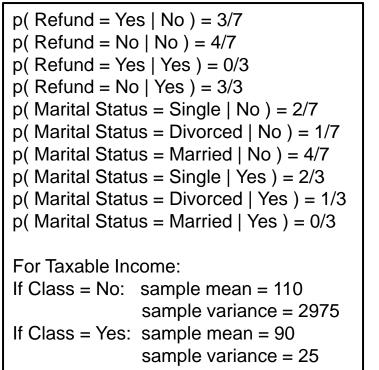
- For (Income | Class = No):
 - sample mean = 110
 - sample variance = 2975

$$p(\text{Income} = 120 | \text{No}) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of using naïve Bayes classifier

Given a Test Record:

 $\mathbf{x} = (\text{Refund} = \text{No}, \text{Status} = \text{Married}, \text{Income} = 120\text{K})$



 $p(\mathbf{x} | \text{Class} = \text{No}) = p(\text{Refund} = \text{No} | \text{Class} = \text{No})$ $\times p(\text{Married} | \text{Class} = \text{No})$ $\times p(\text{Income} = 120\text{K} | \text{Class} = \text{No})$ $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

•
$$p(\mathbf{x} | \text{Class} = \text{Yes}) = p(\text{Refund} = \text{No} | \text{Class} = \text{Yes})$$

 $\times p(\text{Married} | \text{Class} = \text{Yes})$
 $\times p(\text{Income} = 120\text{K} | \text{Class} = \text{Yes})$
 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

p(**x** | No) *p*(No) > *p*(**x** | Yes) *p*(Yes)

therefore $p(No | \mathbf{x}) > p(Yes | \mathbf{x})$

Naïve Bayes classifier

- Problem: if one of the conditional probabilities is zero, then the entire expression becomes zero.
- This is a significant practical problem, especially when training samples are limited.
- Ways to improve probability estimation:

Original:
$$p(x_j | C_i) = \frac{N_{ji}}{N_i}$$

Laplace: $p(x_j | C_i) = \frac{N_{ji} + 1}{N_i + c}$
m - estimate: $p(x_j | C_i) = \frac{N_{ji} + mp}{N_i + m}$
c: number of classes
p: prior probability
m: parameter

Example of Naïve Bayes classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

X: attributes

- *M*: class = mammal
- *N*: class = non-mammal

$$p(X \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$p(X \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$p(X \mid M) p(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$p(X \mid N) p(N) = 0.004 \times \frac{13}{20} = 0.0027$$

p(X | M) p(M) > p(X | N) p(N)=> mammal

Summary of naïve Bayes

- Robust to isolated noise samples.
- Handles missing values by ignoring the sample during probability estimate calculations.
- Robust to irrelevant attributes.
- NOT robust to redundant attributes.
 - Independence assumption does not hold in this case.
 - Use other techniques such as Bayesian Belief Networks (BBN).