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Regression

Linear Regression
Regression Trees
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Characteristics of classification models

model

linear

param
etric

global

stable

decision tree no no no no

logistic regression yes yes yes yes

discriminant analysis yes/no yes yes yes

k-nearest neighbor no no no no

naïve Bayes no yes/no yes yes
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slide thanks to Greg Shakhnarovich (CS195-5, Brown Univ., 2006)
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Suppose target labels come from set Y
– Binary classification: Y = { 0, 1 }
– Regression: Y = ℜ (real numbers)

A loss function maps decisions to costs:
– defines the penalty for predicting    when the 

true value is    .
Standard choice for classification:

0/1 loss (same as
misclassification error)

Standard choice for regression:
squared loss

Loss function
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Most popular estimation method is least squares:
– Determine linear coefficients w that minimize sum of 

squared loss (SSL).
– Use standard (multivariate) differential calculus:

differentiate SSL with respect to w
find zeros of each partial differential equation
solve for each wi

In one dimension:

Least squares linear fit to data
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Multiple dimensions
– To simplify notation and derivation, add a new feature 

x0 = 1 to feature vector x:

– Calculate SSL and determine w:

Least squares linear fit to data
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Least squares linear fit to data
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Least squares linear fit to data
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The inputs X for linear regression can be:
– Original quantitative inputs
– Transformation of quantitative inputs, e.g. log, exp, 

square root, square, etc.
– Polynomial transformation

example:  y = w0 + w1⋅x + w2⋅x2 + w3⋅x3

– Basis expansions
– Dummy coding of categorical inputs
– Interactions between variables

example: x3 = x1 ⋅ x2

This allows use of linear regression techniques to fit much 
more complicated non-linear datasets.

Extending application of linear regression
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Example of fitting polynomial curve with linear model
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97 samples, partitioned into:
– 67 training samples
– 30 test samples

Eight predictors (features):
– 6 continuous (4 log transforms)
– 1 binary
– 1 ordinal

Continuous outcome variable:
– lpsa: log( prostate specific antigen level )

Prostate cancer dataset
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Correlations of predictors in prostate cancer dataset

lcavol log cancer volume
lweight log prostate weight
age age
lbph log amount of benign prostatic hypertrophy
svi seminal vesicle invasion
lcp log capsular penetration
gleason Gleason score
pgg45 percent of Gleason scores 4 or 5
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Fit of linear model to prostate cancer dataset
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Complex models (lots of parameters) often prone to overfitting.
Overfitting can be reduced by imposing a constraint on the overall 
magnitude of the parameters.
Two common types of regularization (shrinkage) in linear regression:

– L2 regularization (a.k.a. ridge regression).  Find w which minimizes:

λ is the regularization parameter: bigger λ imposes more constraint

– L1 regularization (a.k.a. lasso).  Find w which minimizes:

Regularization
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Example of L2 regularization

L2 regularization 
shrinks coefficients 
towards (but not to) 
zero, and towards 

each other.
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Example of L1 regularization

L1 regularization shrinks 
coefficients to zero at 

different rates; different 
values of λ give models 
with different subsets of 

features. 
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Example of subset selection
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Comparison of various selection and shrinkage methods
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L1 regularization gives sparse models, L2 does not
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In addition to linear regression, there are:
– many types of non-linear regression

regression trees
nearest neighbor
neural networks
support vector machines

– locally linear regression
– etc.

Other types of regression



Jeff Howbert    Introduction to Machine Learning       Winter 2014               25

Model very similar to classification trees
Structure:
binary splits on single attributes

Prediction:
mean value of training samples in leaf

Induction:
– greedy
– loss function: sum of squared loss

Regression trees
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Regression trees
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Assume:
– Attribute and split threshold for candidate split 

are selected
– Candidate split partitions samples at parent 

node into child node sample sets C1 and C2

– Loss for the candidate split is:

Regression tree loss function
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Characteristics of regression models

model

linear

param
etric

global

stable

continuous

linear regression yes yes yes yes yes

regression tree no no no no no
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MATLAB interlude

matlab_demo_08.m
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