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Collaborative Filtering

Nearest Neighbor Approach
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Netflix Prize data no longer available to public.

Just after contest ended in July 2009:
– Plans for Netflix Prize 2 contest were announced
– Contest data was made available for further public research at 

UC Irvine repository
But a few months later:

– Netflix was being sued for supposed privacy breaches connected 
with contest data

– FTC was investigating privacy concerns
By March 2010:

– Netflix had settled the lawsuit privately
– Withdrawn the contest data from public use
– Cancelled Netflix Prize 2

Bad news
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An older movie rating dataset from GroupLens
is still available, and perfectly suitable for the

CSS 581 project.

Consists of data collected through the MovieLens movie 
rating website.
Comes in 3 sizes:

– MovieLens 100k
– MovieLens 1M
– MovieLens 10M

http://www.grouplens.org/node/12
http://movielens.umn.edu/login

Good news
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943 users
1682 movies
100,000 ratings
1 - 5 rating scale
Rating matrix is 6.3% occupied
Ratings per user

min = 20 mean = 106 max = 737

Ratings per movie
min = 1 mean = 59 max = 583

MovieLens 100k dataset properties
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Recommender system definition

DOMAIN: some field of activity where users buy, 
view, consume, or otherwise experience items

PROCESS:
1. users provide ratings on items they have 

experienced
2. Take all < user, item, rating > data and build a 

predictive model
3. For a user who hasn’t experienced a particular 

item, use model to predict how well they will 
like it (i.e. predict rating)
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Types of recommender systems

Predictions can be based on either:

content-based approach
– explicit characteristics of users and items

collaborative filtering approach
– implicit characteristics based on similarity of 

users’ preferences to those of other users
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Collaborative filtering algorithms

Common types:
– Global effects
– Nearest neighbor
– Matrix factorization
– Restricted Boltzmann machine
– Clustering
– etc.

Project 2 will explore types highlighted in red.
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Nearest neighbor classifiers

Requires three inputs:
1. The set of stored 

samples
2. Distance metric to 

compute distance 
between samples

3. The value of k, the 
number of nearest 
neighbors to retrieve

test sample
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Nearest neighbor classifiers

To classify test sample:
1. Compute distances to 

samples in training set
2. Identify k nearest 

neighbors 
3. Use class labels of 

nearest neighbors to 
determine class label of 
test sample (e.g. by 
taking majority vote)

test sample
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Compute distance between two points
– Example: Euclidean distance 

Options for determining the class from nearest 
neighbor list
– Take majority vote of class labels among the 

k-nearest neighbors
– Weight the votes according to distance

example: weight factor  w = 1 / d2

Nearest neighbor classification
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For our implementation in Project 2:
– Actually a regression, not a classification.

prediction is a weighted combination of neighbor’s ratings
(real number)

– We consider both all neighbors and various k-nearest
subsets of neighbors.

– Instead of distances, we calculate similarities that are 
used to:

rank neighbors to determine k nearest subset
compute weightings of each neighbor’s rating

Nearest neighbor in collaborative filtering
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Nearest neighbor in action
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Identical preferences –
strong weight

Similar preferences –
moderate weight

For this example:
– Find every user that has rated movie 10
– Compute similarity between user 2 and each of those users
– Weight those users’ ratings according to their similarities
– Predicted rating for user 2 is sum of other users’ weighted ratings 

on movie 10
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For Project 2 we will use Pearson’s correlation coefficient
(PCC) as a measure of similarity between users.

Pearson’s correlation coefficient is covariance normalized 
by the standard deviations of the two variables:

– Always lies in range -1 to 1

Measuring similarity of users
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PCC similarity for two users a and b:

– Both sums are taken over only those movies rated
by both a and b (indexed by j)

– ra,j = rating by user a on movie j
– ⎯ra = average rating on all movies rated by user a
– n = number of movies rated by both a and b

Measuring similarity of users
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PCC similarity for two users a and b, where 
ratings have first been mean-centered for each 
user:

– Both sums are taken over only those movies rated by 
both a and b (indexed by j)

– ma,j = mean-centered rating by user a on movie j
– n = number of movies rated by both a and b

Measuring similarity of users
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Mesauring similarity of users
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Identical preferences –
strong weight

Similar preferences –
moderate weight

Calculating PCC on sparse matrix
– Calculate user mean rating using only those cells where a rating 

exists.
– Subtract user mean rating only from those cells where rating exists.
– Calculate and sum user-user cross-products and user deviations from 

mean only for those movies where a rating exists for both users.
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