Collaborative Filtering

Matrix Factorization Approach

1

Collaborative filtering algorithms

- Common types:
 - Global effects
 - Nearest neighbor
 - Matrix factorization
 - Restricted Boltzmann machine
 - Clustering
 - Etc.

- Optimization is an important part of many machine learning methods.
- The thing we're usually optimizing is the loss function for the model.
 - For a given set of training data X and outcomes y, we want to find the model parameters w that minimize the total loss over all X, y.

Loss function

- Suppose target outcomes come from set Y
 - Binary classification: Y = { 0, 1 }
 - Regression: $Y = \Re$ (real numbers)
- A loss function maps decisions to costs:
 - $L(y_i, \hat{y}_i)$ defines the penalty for predicting \hat{y}_i when the true value is y_i .

• Standard choice for classification: 0/1 loss (same as misclassification error) $L_{0/1}(y_i, \hat{y}_i) = \begin{cases} 0 & \text{if } y_i = \hat{y}_i \\ 1 & \text{otherwise} \end{cases}$

 Standard choice for regression: squared loss

$$L(y_i, \hat{y}_i) = (\hat{y}_i - y_i)^2$$

Least squares linear fit to data

• Calculate sum of squared loss (SSL) and determine w:

$$SSL = \sum_{j=1}^{N} (y_j - \sum_{i=0}^{d} w_i \cdot x_i)^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^{\mathrm{T}} \cdot (\mathbf{y} - \mathbf{X}\mathbf{w})$$
$$\mathbf{y} = \text{vector of all training responses } y_j$$
$$\mathbf{X} = \text{matrix of all training samples } \mathbf{x}_j$$

 $\mathbf{w} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$

$$\hat{y}_t = \mathbf{w} \cdot \mathbf{x}_t$$
 for test sample \mathbf{x}_t

 Can prove that this method of determining w minimizes SSL.

Optimum of a function may be

minimum or maximum

- global or local

Simplest example - quadratic function in 1 variable:

$$y = f(x) = x^2 + 2x - 3$$

Want to find value of x where f(x) is minimum

- This example is simple enough we can find minimum directly
 - Minimum occurs where slope of curve is 0
 - First derivative of function = slope of curve
 - So set first derivative to 0, solve for x

f(x)	=	$x^2 + 2x - 3$
<i>f</i> (<i>x</i>) / d <i>x</i>	=	2 <i>x</i> + 2
2 <i>x</i> + 2	=	0
X	=	-1

is value of x where f(x) is minimum

• Another example - quadratic function in 2 variables:

$$y = f(\mathbf{x}) = f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 + 2x_1$$

Jeff Howbert

Gradient is a vector

- Each element of vector is the slope of function along direction of one of variables
- Each element is the partial derivative of function with respect to one of variables

$$\nabla f(\mathbf{x}) = \nabla f(x_1, x_2, \dots, x_d) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \frac{\partial f(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f(\mathbf{x})}{\partial x_d} \end{bmatrix}$$

- Example:

$$f(\mathbf{x}) = f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 + 2x_1$$
$$\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 + 2x_2 + 2 & 2x_1 + 6x_2 \end{bmatrix}$$

 Gradient vector points in direction of steepest ascent of function

 This two-variable quadratic example is still simple enough that we can find minimum directly

$$f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 + 2x_1$$
$$\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1 + 2x_2 + 2 & 2x_1 + 6x_2 \end{bmatrix}$$

- Set both elements of gradient to 0
- Gives two linear equations in two variables

$$2x_1 + 2x_2 + 2 = 0 2x_1 + 6x_2 = 0$$

- Solve for x₁, x₂
 $x_1 = -3/2 x_2 = 1/2$

- Finding minimum directly by closed form analytical solution often difficult or impossible.
 - Quadratic functions in many variables
 - system of equations for partial derivatives may be ill-conditioned
 - example: linear least squares fit where redundancy among features is high
 - Other convex functions
 - global minimum exists, but there is no closed form solution
 - example: maximum likelihood solution for logistic regression
 - Nonlinear functions
 - partial derivatives are not linear
 - example: $f(x_1, x_2) = x_1(\sin(x_1x_2)) + x_2^2$
 - example: sum of transfer functions in neural networks

- Many approximate methods for finding minima have been developed
 - Gradient descent
 - Newton method
 - Gauss-Newton
 - Levenberg-Marquardt
 - BFGS
 - Conjugate gradient
 - Etc.

Gradient descent optimization

- Simple concept: follow the gradient downhill
- Process:
 - 1. Pick a starting position: $\mathbf{x}^0 = (x_1, x_2, ..., x_d)$
 - 2. Determine the descent direction: $\nabla f(\mathbf{x}^t)$
 - 3. Choose a learning rate:
 - 4. Update your position:

$$\mathbf{x}^{t+1} = \mathbf{x}^{t} - \eta \cdot \nabla f(\mathbf{x}^{t})$$

η

- 5. Repeat from 2) until stopping criterion is satisfied
- Typical stopping criteria
 - $-\nabla f(\mathbf{x}^{t+1}) \sim 0$
 - some validation metric is optimized

Slides thanks to Alexandre Bayen (CE 191, Univ. California, Berkeley, 2009)

http://bayen.eecs.berkeley.edu/bayen/?q=webfm_send/246

Start with a point (guess)

Repeat

- Determine a descent direction
- Choose a step
- Update

Until stopping criterion is satisfied

Start with a point (guess)

Repeat

- Determine a descent direction
- Choose a step
- Update

Until stopping criterion is satisfied

Direction: downhill

Start with a point (guess)

Repeat

- Determine a descent direction
- Choose a step

Update

Until stopping criterion is satisfied

Start with a point (guess)

Repeat

- Determine a descent direction
- Choose a step

Update

Until stopping criterion is satisfied

Now you are here

Start with a point (guess)

Repeat

- Determine a descent direction
- Choose a step
- Update

Until stopping criterion is satisfied

In general, a function may have multiple local minima (and maxima)

Example in MATLAB

Find minimum of function in two variables: $y = x_1^2 + x_1x_2 + 3x_2^2$

http://www.youtube.com/watch?v=cY1YGQQbrpQ

Gradient descent optimization

- Problems:
 - Choosing step size
 - \blacklozenge too small \rightarrow convergence is slow and inefficient
 - too large \rightarrow may not converge
 - Can get stuck on "flat" areas of function
 - Easily trapped in local minima

Stochastic (definition):

- 1. involving a random variable
- 2. involving chance or probability; probabilistic

Stochastic gradient descent

- Application to training a machine learning model:
 - 1. Choose one sample from training set
 - 2. Calculate loss function for that single sample
 - 3. Calculate gradient from loss function
 - 4. Update model parameters a single step based on gradient and learning rate
 - 5. Repeat from 1) until stopping criterion is satisfied
- Typically entire training set is processed multiple times before stopping.
- Order in which samples are processed can be fixed or random.

Matrix factorization in action

28

Matrix factorization in action

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6	movie 7	movie 8	movie 9	movie 10	movie 17770
factor 1											
factor 2											
factor 3											
factor 4											
factor 5											

+

	-				_
	or 1	or 2	or 3	or 4	S 5
	acto	acto	acto	acto	acto
user 1	<u>т</u>	+	+	+	+
user 2					
user 3					
user 4					
user 5					
user 6					
user 7					
user 8					
user 9					
user 10					
user 480189					

multiply and add factor vectors (dot product) for desired < user, movie > prediction

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6	movie 7	movie 8	movie 9	movie 10	:	movie 17770
user 1			1		2							3
user 2		2		3	3			4				
user 3							5	3		4		
user 4	2				3			2				2
user 5		4				5			3			4
user 6			2									
user 7			2					4	2	3		
user 8	3	4				4	?					
user 9									3			
user 10			1		2							2
user 480189		4			3			3				

Notation

- Number of users = I
- Number of items = J
- Number of factors per user / item = F
- User of interest = i
- Item of interest = j
- Factor index = f
- User matrix U dimensions = I x F
 Item matrix V dimensions = J x F

• Prediction
$$\hat{r}_{ij}$$
 for < user, item > pair i, j:
 $\hat{r}_{ij} = \sum_{f=1}^{F} U_{if} \cdot V_{jf}$

• Loss for prediction where true rating is r_{ij} :

$$L(r_{ij}, \hat{r}_{ij}) = (r_{ij} - \hat{r}_{ij})^2 = (r_{ij} - \sum_{f=1}^F U_{if} \cdot V_{jf})^2$$

- Using squared loss; other loss functions possible
- Loss function contains F model variables from U and F model variables from V

• Gradient of loss function for sample < i, j > :

$$\frac{\partial L(r_{ij}, \hat{r}_{ij})}{\partial U_{if}} = \frac{\partial (r_{ij} - \sum_{f=1}^{F} U_{if} \cdot V_{jf})^{2}}{\partial U_{if}} = -2(r_{ij} - \sum_{f=1}^{F} U_{if} \cdot V_{jf})V_{jf}$$
$$\frac{\partial L(r_{ij}, \hat{r}_{ij})}{\partial V_{jf}} = \frac{\partial (r_{ij} - \sum_{f=1}^{F} U_{if} \cdot V_{jf})^{2}}{\partial V_{jf}} = -2(r_{ij} - \sum_{f=1}^{F} U_{if} \cdot V_{jf})U_{if}$$

- for
$$f = 1$$
 to F

• Let's simplify the notation:

let
$$e = r_{ij} - \sum_{f=1}^{F} U_{if} \cdot V_{jf}$$
 (the prediction error)
 $\frac{\partial L(r_{ij}, \hat{r}_{ij})}{\partial U_{if}} = \frac{\partial e^2}{\partial U_{if}} = -2eV_{jf}$
 $\frac{\partial L(r_{ij}, \hat{r}_{ij})}{\partial V_{jf}} = \frac{\partial e^2}{\partial V_{jf}} = -2eU_{if}$

- for
$$f = 1$$
 to F

- Set learning rate = η
- Then the factor matrix updates for sample < i, j > are:

$$U_{if} = U_{if} + 2\eta e V_{jf}$$
$$V_{jf} = V_{jf} + 2\eta e U_{if}$$

- for f = 1 to F

SGD for training a matrix factorization:

- 1. Decide on F = dimension of factors
- 2. Initialize factor matrices with small random values
- 3. Choose one sample from training set
- 4. Calculate loss function for that single sample
- 5. Calculate gradient from loss function
- 6. Update 2 · F model parameters a single step using gradient and learning rate
- 7. Repeat from 3) until stopping criterion is satisfied

Must use some form of regularization (usually L₂):

$$L(r_{ij}, \hat{r}_{ij}) = (r_{ij} - \sum_{f=1}^{F} U_{if} \cdot V_{jf})^{2} + \lambda \sum_{f=1}^{F} U_{if}^{2} + \lambda \sum_{f=1}^{F} V_{jf}^{2}$$

• Update rules become:

$$U_{if} = U_{if} + 2\eta (eV_{jf} - \lambda U_{if})$$
$$V_{jf} = V_{jf} + 2\eta (eU_{if} - \lambda V_{jf})$$

- for f = 1 to F

Stochastic gradient descent

- Random thoughts ...
 - Samples can be processed in small batches instead of one at a time → batch gradient descent
 - We'll see stochastic / batch gradient descent again when we learn about neural networks (as back-propagation)