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Collaborative Filtering

Matrix Factorization Approach
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Collaborative filtering algorithms

Common types:
– Global effects
– Nearest neighbor
– Matrix factorization
– Restricted Boltzmann machine
– Clustering
– Etc.
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Optimization is an important part of many 
machine learning methods.

The thing we’re usually optimizing is the loss 
function for the model.
– For a given set of training data X and 

outcomes y, we want to find the model 
parameters w that minimize the total loss over 
all X, y.

Optimization
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Suppose target outcomes come from set Y
– Binary classification: Y = { 0, 1 }
– Regression: Y = ℜ (real numbers)

A loss function maps decisions to costs:
– defines the penalty for predicting    when the 

true value is    .
Standard choice for classification:

0/1 loss (same as
misclassification error)

Standard choice for regression:
squared loss

Loss function
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Calculate sum of squared loss (SSL) and determine w:

Can prove that this method of determining w minimizes
SSL.

Least squares linear fit to data
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Optimum of a function may be

– minimum or maximum

– global or local

Optimization
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Simplest example - quadratic function in 1 variable:
y = f( x ) = x2 + 2x – 3

Want to find value of x where f( x ) is minimum

Optimization

global optimum
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This example is simple enough we can find 
minimum directly
– Minimum occurs where slope of curve is 0
– First derivative of function = slope of curve
– So set first derivative to 0, solve for x

Optimization
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f( x ) = x2 + 2x – 3
f( x ) / dx = 2x + 2
2x + 2 = 0

x = -1

is value of x where f( x ) is minimum

Optimization
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Another example - quadratic function in 2 variables:
y = f( x ) = f( x1, x2 ) = x1

2 + 2x1x2 + 3x2
2 + 2x1

f( x ) is minimum where gradient of f( x ) is zero in 
all directions

Optimization
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Gradient is a vector
– Each element of vector is the slope of function 

along direction of one of variables
– Each element is the partial derivative of function 

with respect to one of variables

– Example:

Optimization
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Gradient vector points in direction of steepest 
ascent of function

Optimization
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This two-variable quadratic example is still simple 
enough that we can find minimum directly

– Set both elements of gradient to 0
– Gives two linear equations in two variables

– Solve for x1, x2

Optimization
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Finding minimum directly by closed form analytical solution 
often difficult or impossible.
– Quadratic functions in many variables

system of equations for partial derivatives may be ill-conditioned
example: linear least squares fit where redundancy among 

features is high

– Other convex functions
global minimum exists, but there is no closed form solution
example: maximum likelihood solution for logistic regression 

– Nonlinear functions
partial derivatives are not linear
example: f( x1, x2 ) = x1( sin( x1x2 ) ) + x2

2

example: sum of transfer functions in neural networks

Optimization
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Many approximate methods for finding minima 
have been developed
– Gradient descent
– Newton method
– Gauss-Newton
– Levenberg-Marquardt
– BFGS
– Conjugate gradient
– Etc.

Optimization
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Simple concept: follow the gradient downhill
Process:
1. Pick a starting position: x0 = ( x1, x2, …, xd )
2. Determine the descent direction: - ∇f( xt )
3. Choose a learning rate: η
4. Update your position: xt+1 = xt - η ⋅ ∇f( xt )
5. Repeat from 2) until stopping criterion is satisfied

Typical stopping criteria
– ∇f( xt+1 ) ~ 0
– some validation metric is optimized

Gradient descent optimization
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Slides thanks to Alexandre Bayen
(CE 191, Univ. California, Berkeley, 2009)

http://bayen.eecs.berkeley.edu/bayen/?q=webfm_send/246

Gradient descent optimization

http://bayen.eecs.berkeley.edu/bayen/?q=webfm_send/246
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Gradient descent algorithm
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Gradient descent algorithm
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Gradient descent algorithm
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Gradient descent algorithm
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Gradient descent algorithm
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In general, a function may have multiple local
minima (and maxima)

Gradient descent algorithm
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Example in MATLAB

Find minimum of function in two variables:
y = x1

2 + x1x2 + 3x2
2

http://www.youtube.com/watch?v=cY1YGQQbrpQ

Gradient descent optimization

http://www.youtube.com/watch?v=cY1YGQQbrpQ
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Problems:
– Choosing step size

too small → convergence is slow and inefficient
too large → may not converge

– Can get stuck on “flat” areas of function
– Easily trapped in local minima

Gradient descent optimization
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Stochastic (definition):
1. involving a random variable
2. involving chance or probability; probabilistic

Stochastic gradient descent
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Application to training a machine learning model:
1. Choose one sample from training set
2. Calculate loss function for that single sample
3. Calculate gradient from loss function
4. Update model parameters a single step based on 

gradient and learning rate
5. Repeat from 1) until stopping criterion is satisfied

Typically entire training set is processed multiple 
times before stopping.
Order in which samples are processed can be 
fixed or random.

Stochastic gradient descent
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Matrix factorization in action

m
ov
ie
 1

m
ov
ie
 2

m
ov
ie
 3

m
ov
ie
 4

m
ov
ie
 5

m
ov
ie
 6

m
ov
ie
 7

m
ov
ie
 8

m
ov
ie
 9

m
ov
ie
 1
0

… m
ov
ie
 1
77

7 0

user 1 1 2 3
user 2 2 3 3 4
user 3 5 3 4
user 4 2 3 2 2
user 5 4 5 3 4
user 6 2
user 7 2 4 2 3
user 8 3 4 4
user 9 3
user 10 1 2 2

…
user 480189 4 3 3

m
ov
ie
 1

m
ov
ie
 2

m
ov
ie
 3

m
ov
ie
 4

m
ov
ie
 5

m
ov
ie
 6

m
ov
ie
 7

m
ov
ie
 8

m
ov
ie
 9

m
ov
ie
 1
0

… m
ov
ie
 1
77

70

factor 1
factor 2
factor 3
factor 4
factor 5

< a bunch of numbers >

fa
ct
or
 1

fa
ct
or
 2

fa
ct
or
 3

fa
ct
or
 4

fa
ct
or
 5

user 1
user 2
user 3
user 4
user 5
user 6
user 7
user 8
user 9
user 10

…
user 480189

< 
a 

bu
nc

h 
of

nu
m

be
rs

 >

factorization
(training
process)

+

training
data



Jeff Howbert    Introduction to Machine Learning       Winter 2014               29
m
ov
ie
 1

m
ov
ie
 2

m
ov
ie
 3

m
ov
ie
 4

m
ov
ie
 5

m
ov
ie
 6

m
ov
ie
 7

m
ov
ie
 8

m
ov
ie
 9

m
ov
ie
 1
0

… m
ov
ie
 1
77

7 0

user 1 1 2 3
user 2 2 3 3 4
user 3 5 3 4
user 4 2 3 2 2
user 5 4 5 3 4
user 6 2
user 7 2 4 2 3
user 8 3 4 4 ?
user 9 3
user 10 1 2 2

…
user 480189 4 3 3

m
ov
ie
 1

m
ov
ie
 2

m
ov
ie
 3

m
ov
ie
 4

m
ov
ie
 5

m
ov
ie
 6

m
ov
ie
 7

m
ov
ie
 8

m
ov
ie
 9

m
ov
ie
 1
0

… m
ov
ie
 1
77

70

factor 1
factor 2
factor 3
factor 4
factor 5

fa
ct
or
 1

fa
ct
or
 2

fa
ct
or
 3

fa
ct
or
 4

fa
ct
or
 5

user 1
user 2
user 3
user 4
user 5
user 6
user 7
user 8
user 9
user 10

…
user 480189

multiply and add
factor vectors
(dot product)
for desired

< user, movie >
prediction

+

Matrix factorization in action



Jeff Howbert    Introduction to Machine Learning       Winter 2014               30

Notation
– Number of users = I
– Number of items = J
– Number of factors per user / item = F
– User of interest = i
– Item of interest = j
– Factor index = f

User matrix U dimensions = I x F
Item matrix V dimensions = J x F

Matrix factorization



Jeff Howbert    Introduction to Machine Learning       Winter 2014               31

Prediction    for < user, item > pair i, j :

Loss for prediction where true rating is   :

– Using squared loss; other loss functions possible
– Loss function contains F model variables from U

and F model variables from V

Matrix factorization
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Gradient of loss function for sample < i, j > :

– for f = 1 to F

Matrix factorization
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Let’s simplify the notation:

– for f = 1 to F

Matrix factorization
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Matrix factorization

Set learning rate = η
Then the factor matrix updates for sample < i, j >
are:

– for f = 1 to F
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SGD for training a matrix factorization:

1. Decide on F = dimension of factors
2. Initialize factor matrices with small random values
3. Choose one sample from training set
4. Calculate loss function for that single sample
5. Calculate gradient from loss function
6. Update 2 ⋅ F model parameters a single step using 

gradient and learning rate
7. Repeat from 3) until stopping criterion is satisfied

Matrix factorization
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Must use some form of regularization (usually L2):

Update rules become:

– for f = 1 to F

Matrix factorization
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Random thoughts …
– Samples can be processed in small batches 

instead of one at a time → batch gradient 
descent

– We’ll see stochastic / batch gradient descent 
again when we learn about neural networks 
(as back-propagation)

Stochastic gradient descent
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