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Clustering

Basic Concepts and Algorithms 2
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Hierarchical clustering

Density-based clustering

Cluster validity

Clustering topics
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Proximity is a generic term that refers to either similarity 
or dissimilarity.
Similarity

– Numerical measure of how alike two data objects are.
– Measure is higher when objects are more alike.
– Often falls in the range [ 0, 1 ].

Dissimilarity
– Numerical measure of how different two data objects are.
– Measure is lower when objects are more alike.
– Minimum dissimilarity often 0, upper limit varies.
– Distance sometimes used as a synonym, usually for specific 

classes of dissimilarities.

Proximity measures
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A clustering is a set of clusters

Important distinction between hierarchical and 
partitional clustering
– Partitional: data points divided into finite 

number of partitions (non-overlapping subsets)
each data point is assigned to exactly one subset

– Hierarchical: data points placed into a set of 
nested clusters, organized into a hierarchical 
tree

tree expresses a continuum of similarities and 
clustering

Approaches to clustering
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Produces a set of nested clusters organized as a 
hierarchical tree
Can be visualized as a dendrogram
– A tree like diagram that records the sequence 

of merges or splits

Hierarchical clustering 

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5



Jeff Howbert    Introduction to Machine Learning       Winter 2014               6

Microarray data analysis

NIH Center for Information Technology

experiment
dendrogram

gene
dendrogram
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Melanoma gene expression profiles

Univ. of Maryland, Human-Computer Interaction Lab
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Genetic distance among wheat cultivars

Hierarchical clustering based on 13 quality traits of 75 
wheat landraces including seven wheat cultivars.

Australian Society of Agronomy, The Regional Institute Ltd.
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Circular cladogram
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Do not have to assume any particular number of 
clusters
– Any desired number of clusters can be 

obtained by ‘cutting’ the dendogram at the 
proper level

They may correspond to meaningful taxonomies
– Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …)

Strengths of hierarchical clustering
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Notion of a cluster can be ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters
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Two main types of hierarchical clustering
– Agglomerative:  

Start with the points as individual clusters
At each step, merge the closest pair of clusters until only one 

cluster (or k clusters) left

– Divisive:  
Start with one, all-inclusive cluster 
At each step, split a cluster until each cluster contains a point 

(or there are k clusters)

Traditional hierarchical algorithms use a proximity 
or distance matrix
– Merge or split one cluster at a time

Hierarchical clustering
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More popular hierarchical clustering technique
Basic algorithm is straightforward

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

Key operation is the computation of proximities 
between cluster pairs

– Different approaches to defining the distance between 
clusters distinguish the different algorithms

Agglomerative clustering algorithm
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Starting situation 

Start with clusters of individual points and a proximity 
matrix
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Intermediate situation

After some merging steps, we have some clusters. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

proximity matrix



Jeff Howbert    Introduction to Machine Learning       Winter 2014               16

Intermediate situation

We decide to merge the two closest clusters (C2 and C5)  
and update the proximity matrix. 
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After merging

The question is “How do we update the proximity matrix?” 
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Defining inter-cluster similarity
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MAX
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Other methods driven by an objective 
function
– Ward’s method uses squared error

proximity matrix



Jeff Howbert    Introduction to Machine Learning       Winter 2014               19

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. proximity matrix

MIN
MAX
Group average
Distance between centroids
Other methods driven by an objective 
function
– Ward’s method uses squared error

Defining inter-cluster similarity
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Defining inter-cluster similarity
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Other methods driven by an objective 
function
– Ward’s method uses squared error

× ×

Defining inter-cluster similarity
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Similarity of two clusters is based on the two 
most similar (closest) points in the different 
clusters
– Determined by one pair of points, i.e., by one 

link in the proximity graph.

Cluster similarity: MIN or single link 

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical clustering: MIN

nested clusters dendrogram
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Strength of MIN

original points

• Can handle non-elliptical shapes

two clusters
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Limitations of MIN

• Sensitive to noise and outliers

original points two clusters
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Similarity of two clusters is based on the two least 
similar (most distant) points in the different 
clusters
– Determined by one pair of points, i.e., by one 

link in the proximity graph.

Cluster similarity: MAX or complete link

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical clustering: MAX

nested clusters dendrogram
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Strength of MAX

• Less susceptible to noise and outliers

original points two clusters
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Limitations of MAX

• Tends to break large clusters

• Biased towards globular clusters

original points two clusters
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Proximity of two clusters is the average of pairwise proximity 
between points in the two clusters.

Need to use average connectivity for scalability since total 
proximity favors large clusters

Cluster similarity: group average

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
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Clusterp
Clusterp
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∑
∈
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I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical clustering: group average

nested clusters dendrogram
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Compromise between single and complete 
link

Strengths:
– Less susceptible to noise and outliers

Limitations:
– Biased towards globular clusters

Hierarchical clustering: group average
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Similarity of two clusters is based on the increase 
in squared error when two clusters are merged
– Similar to group average if distance between 

points is distance squared

Less susceptible to noise and outliers

Biased towards globular clusters

Hierarchical analogue of k-means
– Can be used to initialize k-means

Cluster similarity: Ward’s method
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Hierarchical clustering comparison
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Time and space complexity
– n = number of datapoints or objects
– Space requirement ~ O( n2 ) since it uses the 

proximity matrix.
– Time complexity ~ O( n3 ) many cases.

There are n steps and at each step the proximity 
matrix (size n2) must be searched and updated.

Can be reduced to O( n2 log( n ) ) time for some 
approaches.

Hierarchical clustering
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Problems and limitations
– Once a decision is made to combine two clusters, it 

cannot be undone.
– No objective function is directly minimized.
– Different schemes have problems with one or more of 

the following:
Sensitivity to noise and outliers
Difficulty handling different sized clusters and convex shapes
Breaking large clusters

– Inherently unstable toward addition or deletion of 
samples.

Hierarchical clustering
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Cut tree at some height to get desired number of 
partitions k

From hierarchical to partitional clustering

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25 k = 2

k = 4

k = 3



Jeff Howbert    Introduction to Machine Learning       Winter 2014               39

DBSCAN is a density-based algorithm.
– Density = number of points within a specified 

radius (Eps)
– A point is a core point if it has more than a 

specified number of points (MinPts) within Eps. 
These points are in the interior of a cluster.

– A border point has fewer than MinPts within Eps, 
but is in the neighborhood of a core point.

– A noise point is any point that is not a core point 
or a border point. 

DBSCAN
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DBSCAN: core, border, and noise points
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1) Label all points as core, border, or noise points.
2) Eliminate noise points.
3) Put an edge between all core points that are 

within Eps of each other.
4) Make each group of connected core points into 

a separate cluster.
5) Assign each border point to one of the clusters 

of its associated core points.

DBSCAN algorithm
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DBSCAN: core, border, and noise points

original points point types: core, 
border and noise

Eps = 10, MinPts = 4
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When DBSCAN works well

original points clusters

resistant to noise
can handle clusters of different shapes and sizes
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When DBSCAN does NOT work well

original points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

varying densities
high-dimensional data
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Idea:
– for points in a cluster, their kth nearest neighbors 

are at roughly the same distance
– noise points have the kth nearest neighbor at 

farther distance
– plot sorted distance of every point to its kth

nearest neighbor
Example:
– assume k = 4
– plot sorted distances to

4th nearest neighbor
– select Eps as distance

where curve has sharp
elbow 

DBSCAN: determining Eps and MinPts



Jeff Howbert    Introduction to Machine Learning       Winter 2014               46

For supervised classification we have a variety of 
measures to evaluate how good our model is

– Accuracy, precision, recall, squared error

For clustering, the analogous question is how to evaluate 
the “goodness” of the resulting clusters?

But cluster quality is often in the eye of the beholder! 

It’s still important to try and measure cluster quality
– To avoid finding patterns in noise
– To compare clustering algorithms
– To compare two sets of clusters
– To compare two clusters

Cluster validity 
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1. Determining the clustering tendency of a set of data, i.e., 
distinguishing whether non-random structure actually exists in the 
data. 

2. Comparing the results of a cluster analysis to externally known 
results, e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data 
without reference to external information. 

- Use only the data
4. Comparing the results of two different sets of cluster analyses to 

determine which is better.
5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to 
evaluate the entire clustering or just individual clusters. 

Different types of cluster validation
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Numerical measures used to judge various aspects of cluster 
validity are classified into the following three types:
– External index: Measures extent to which cluster labels match 

externally supplied class labels.
Entropy 

– Internal index: Measures the “goodness” of a clustering structure 
without respect to external information. 

Correlation
Visualize similarity matrix
Sum of Squared Error (SSE)

– Relative index: Compares two different clusterings or clusters. 
Often an external or internal index is used for this function, e.g., SSE 
or entropy.

Measures of cluster validity
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Two matrices 
– Proximity matrix
– “Incidence” matrix

One row and one column for each data point.
An entry is 1 if the associated pair of points belong to same cluster.
An entry is 0 if the associated pair of points belongs to different 
clusters.

Compute the correlation between the two matrices
– Since the matrices are symmetric, only the correlation between 

n ⋅ ( n - 1 ) / 2 entries needs to be calculated.

High correlation indicates that points that belong to the 
same cluster are close to each other. 
Not a good measure for some density or contiguity based 
clusters.

Measuring cluster validity via correlation
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Correlation of incidence and proximity matrices for k-means 
clusterings of the following two data sets. 

Measuring cluster validity via correlation
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corr = -0.9235 corr = -0.5810

NOTE: correlation will be positive if proximity defined as similarity, 
negative if proximity defined as dissimilarity or distance.
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Order the similarity matrix with respect to cluster indices 
and inspect visually. 

Visualizing similarity matrix for cluster validation
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Clusters in random data are not so crisp

Visualizing similarity matrix for cluster validation
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Visualizing similarity matrix for cluster validation

k-means
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Clusters in random data are not so crisp

Visualizing similarity matrix for cluster validation
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Visualizing similarity matrix for cluster validation
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Clusters in more complicated figures often aren’t well 
separated
SSE is good for comparing two clusterings or two clusters 
(average SSE).
Can also be used to choose the number of clusters

Internal measures: SSE
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SSE curve for a more complicated data set

Internal measures: SSE
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Need a framework to interpret any measure. 
– For example, if our measure of evaluation has the value 10, is that 

good, fair, or poor?

Statistics provide a framework for cluster validity
– The more “atypical” a clustering result is, the more likely it represents 

valid structure in the data
– Can compare the values of an index that result from random data or 

clusterings to those of a clustering result.
If the value of the index is unlikely, then the cluster results are valid

– These approaches are more complicated and harder to understand.

For comparing the results of two different sets of cluster 
analyses, a framework is less necessary.

– However, there is the question of whether the difference between two 
index values is significant

Framework for cluster validity
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Example
– Compare SSE of 0.005 for three true clusters against SSEs for 

three clusters in random data
– Histogram shows distributions of SSEs for 500 sets of three 

clusters in random data points (100 data points randomly placed in 
range 0.2 - 0.8 for x and y)

Statistical framework for SSE
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Correlation of incidence and proximity matrices for the 
k-means clusterings of the following two data sets. 

Statistical framework for correlation
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corr = -0.9235 corr = -0.5810
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“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubes, 1988

Final comment on cluster validity
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MATLAB interlude

matlab_demo_12.m


	Clustering��Basic Concepts and Algorithms 2
	Clustering topics
	Proximity measures
	Approaches to clustering
	Hierarchical clustering 
	Microarray data analysis
	Melanoma gene expression profiles
	Genetic distance among wheat cultivars
	Circular cladogram
	Strengths of hierarchical clustering
	Notion of a cluster can be ambiguous
	Hierarchical clustering
	Agglomerative clustering algorithm
	Starting situation 
	Intermediate situation
	Intermediate situation
	After merging
	Defining inter-cluster similarity
	Defining inter-cluster similarity
	Defining inter-cluster similarity
	Defining inter-cluster similarity
	Defining inter-cluster similarity
	Cluster similarity: MIN or single link 
	Hierarchical clustering: MIN
	Strength of MIN
	Limitations of MIN
	Cluster similarity: MAX or complete link
	Hierarchical clustering: MAX
	Strength of MAX
	Limitations of MAX
	Cluster similarity: group average
	Hierarchical clustering: group average
	Hierarchical clustering: group average
	Cluster similarity: Ward’s method
	Hierarchical clustering comparison
	Hierarchical clustering
	Hierarchical clustering
	From hierarchical to partitional clustering
	DBSCAN
	DBSCAN: core, border, and noise points
	DBSCAN algorithm
	DBSCAN: core, border, and noise points
	When DBSCAN works well
	When DBSCAN does NOT work well
	DBSCAN: determining Eps and MinPts
	Cluster validity 
	Different types of cluster validation
	Measures of cluster validity
	Measuring cluster validity via correlation
	Measuring cluster validity via correlation
	Visualizing similarity matrix for cluster validation
	Visualizing similarity matrix for cluster validation
	Visualizing similarity matrix for cluster validation
	Visualizing similarity matrix for cluster validation
	Visualizing similarity matrix for cluster validation
	Internal measures: SSE
	Internal measures: SSE
	Framework for cluster validity
	Statistical framework for SSE
	Statistical framework for correlation
	Final comment on cluster validity
	MATLAB interlude

